• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Well-posedness and mathematical analysis of linear evolution equations with a new parameter

Monyayi, Victor Tebogo 01 1900 (has links)
Abstract in English / In this dissertation we apply linear evolution equations to the Newtonian derivative, Caputo time fractional derivative and $-time fractional derivative. It is notable that the most utilized fractional order derivatives for modelling true life challenges are Riemann- Liouville and Caputo fractional derivatives, however these fractional derivatives have the same weakness of not satisfying the chain rule, which is one of the most important elements of the match asymptotic method [2, 3, 16]. Furthermore the classical bounded perturbation theorem associated with Riemann-Liouville and Caputo fractional derivatives has con rmed not to be in general truthful for these models, particularly for solution operators of evolution systems of a derivative with fractional parameter ' that is less than one (0 < ' < 1) [29]. To solve this problem, we introduce the derivative with new parameter, which is de ned as a local derivative but has a fractional order called $-derivative and apply this derivative to linear evolution equation and to support what we have done in the theory, we utilize application to population dynamics and we provide the numerical simulations for particular cases. / Mathematical Sciences / M.Sc. (Applied Mathematics)

Page generated in 0.1092 seconds