• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 12
  • 12
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantum Mechanical Calculations of Thermoelectrical Polymers and Organic Molecules

Mirsakiyeva, Amina January 2015 (has links)
The subject of the present licentiate thesis is density functional theorybased electronic structure calculations of organic thermoelectric materials and novel organic molecules. We used the Car-Parrinello molecular dynamics method in order to investigate the electronic structure of “green energy” and “greenchemistry” compounds. First, we have investigated the electronic structure of the poly(3,4-ethylene-dioxythiophene) (PEDOT) and its derivatives - the best studied and successfully implemented by industry organic thermoelectric material. Its transparency, low toxicity and high stability in the oxidized state are combined withan ability to produce electrical current when applying a temperature gradient. This makes PEDOT a perfect “organic metal” and a first candidate for organic thermoelectrogenerators - devices that can produce “green energy” from a temperature difference. The average structures found in these quantum dynamical simulations agree well with earlier static electronic structure studies. The energy gap of two, four and six unit oligomers of PEDOT was calculated and was found to lie in the range of previous theoretical studies. We have also calculatedthe point-charge distributions along the polymer backbone in order to investigate the polaron formed by doping agents of PEDOT. Our analysis allowed us to predict possible localization of the charge in the center of the polymer chain. However, further calculations of the twelve unit PEDOT and its selenium and tellurium derivatives will provide more information. First-principles calculations for the tellurium derivative of PEDOT are here presented for the first time. The second part of our investigation concerns theoretical calculations of novel piperidine-containing acetylene glycols. These molecules were newly synthesized by our experimental collaborators and are expected to provideplant growth stimulation properties, the same as its diacetylene analogs. We performed quantum mechanical calculations of four compounds, presented ananalysis of the highest occupied and lowest unoccupied molecular orbitals and collected detailed information on point-charges for further parametrization of novel molecules for future computational studies. According to these results, the low production yield found in the experiments cannot be attributed to chemical instability in these novel compounds. / <p>QC 20150629</p> / ScalTEG SSF
12

Electronic and optical properties of conducting polymers from quantum mechanical computations

Mirsakiyeva, Amina January 2017 (has links)
Conductive polymers are also known as "organic metals" due to their semiconducting properties. They are found in a wide range of applications in the field of organic electronics. However, the growing number of experimental works is not widely supported with theoretical calculations. Hence, the field of conductive polymers is experiencing lack of understanding of mechanisms occurring in the polymers. In this PhD thesis, the aim is to increase understanding of conductive polymers by performing theoretical calculations.        The polymers poly(3,4-ethylenedioxythiophene) (PEDOT) together with its selenium (PEDOS) and tellurium (PEDOTe) derivatives, poly(p-phenylene) (PPP) and naphthobischalcogenadiazoles (NXz) were studied. Several computational methods were applied for analysis of mentioned structures, including density functional theory (DFT), tight-binding modelling (TB), and Car-Parrinello molecular dynamics (CPMD) calculations. The combination of CPMD and DFT calculations was applied to investigate the PEDOT, PEDOS and PEDOTe. The polymers were studied using four different functionals in order to investigate the full picture of structural changes, electronic and optical properties. Temperature effects were studied using molecular dynamics simulations. Wide statistics for structural and molecular orbitals analysis were collected.         The TB method was employed for PPP. The formation and motion of the excitations, polarons and bipolarons, along the polymer backbone was investigated in presence of electric and magnetic fields. The influence of non-magnetic and magnetic impurities was determined.        The extended π-conjugated structures of NXz were computed using B3LYP and ωB97XD functionals in combination with the 6-31+G(d) basis set. Here, the structural changes caused by polaron formation were analyzed. The combined analysis of densities of states and absorption spectra was used for understanding of the charge transition. / <p>QC 20170928</p>

Page generated in 0.0558 seconds