Spelling suggestions: "subject:"caratheodory problem"" "subject:"carathéodory problem""
1 |
p- Laplacian operators with L^1 coefficient functionsWang, Wan-Zhen 27 July 2011 (has links)
In this thesis, we consider the following one dimensional p-Laplacian eigenvalue problem:
-((y¡¦/s)^(p-1))¡¦+(p-1)(q-£fw)y^(p-1)=0 a.e. on (0,1) (0.1)
and satisfy
£\y(0)+ £\ ¡¦ (y¡¦(0)/s(0))=0
£]y(1)+£]¡¦ (y¡¦(1)/s(1))=0 (0.2)
where f^(p-1)=|f|^p-2 f=|f|^p-1 sgnf; £\, £\¡¦, £], £]¡¦ ∈R
such that £\^2+£\¡¦^2>0 and£]^2+£]¡¦^2>0;
and the functions s,q,w are required to satisfy
(1) s,q,w∈L^1(0,1);
(2) for 0≤x≤1, we have s≥0,w≥0 a.e.;
(3) for any x∈ (0,1), ¡ì_0^1 s(t)dt>0, ¡ì_0^x w(t)dt>0,and¡ì_x^1 w(t)dt>0;
(4) if for some x_1<x_2,we have¡ì_ x1^x2 w(t)dt=0,then¡ì_ x1^x2 |q(t)|dt=0;
(5) for all n∈N, there is a partition {£a_i^(n)}_i=1 ^2n of [0,1] such that for any 0<k≤n-1, ¡ì_£a_2k^(n)^ £a_2k+1^(n) w>0 and ¡ì_£a_2k+1^(n)^ £a_2k+2^(n) s>0.
We call the above conditions Atkinson conditions, first introduce in [1].There conditions include the case when s,q,w∈L^1(0,1) and s,w>0 a.e.
We use a generalized Prufer substitution and Caratheodory theorem to prove the existence and uniqueness for the solution of the initial value problem of (0.1) above. Then we generalize the Sturm oscillation theorem to one dimensional p-Laplacian and establish the Sturm-Liouville properties of the p-Laplacian operators with L^1 coefficient functions. Our results filled up some gaps in Binding-Drabek [3].
|
Page generated in 0.2825 seconds