• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 14
  • 12
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 122
  • 115
  • 85
  • 80
  • 70
  • 40
  • 30
  • 22
  • 22
  • 22
  • 20
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Multimetal complexes of Fischer carbenes

Bezuidenhout, Daniela Ina 23 October 2010 (has links)
Fischer carbene complexes of the Group VI transition metals (Cr, Mo and W) containing at least two or three different transition metal substituents, all in electronic contact with the carbene carbon atom, were synthesized and studied both in solution and in the solid state. For the complexes of the type [M(CO)5{C(OR)R’}], the substituents chosen included (hetero)aromatic (benzene or thiophene) rings π-bonded to a chromium tricarbonyl fragment or ferrocene as the R’-substituent, while the OR-substituent was systematically varied between an ethoxy or a titanoxy group, to yield the complexes 1 (M = Cr, R = Et, R’ = Fc), 2 (M = W, R = Et, R’ = Fc), 5 (M = Cr, R = TiCp2Cl, R’ = Fc), 6 (M = W, R = TiCp2Cl, R’ = Fc), 7 (M = Mo, R = TiCp2Cl, R’ = Fc), 12 (M = Cr, R = TiCp2Cl, R’ = 2-thienyl) and 13 (M = Cr, R = TiCp2Cl, R’ = [Cr(CO) 3 (η 6-phenyl)]). Direct lithiation of the ferrocene with n-BuLi/TMEDA at elevated temperatures, followed by the Fischer method of carbene preparation, also resulted, in most cases, in the formation of the novel biscarbene complexes with bridging ferrocen- 1,1’-diyl carbene ligands [μ-Fe{C5H4C(OEt)M(CO) sub>5}2] (3: M = Cr, 4: M = W) or the unusual bimetallacyclic bridged biscarbene complexes [{μ-TiCp2O2-O,O’}{μ- Fe(C5H4)2-C,C’}{CM(CO) 5}2] (8: M = Cr, 9: M = W, 10: M = Mo). It was attempted to prepare the mixed heteronuclear biscarbene complex 11 [W(CO) 5C{μ-TiCp2O2- O,O’}{μ-Fe(C5H4)2-C,C’}CCr(CO) 5], however the complex could not be fully characterized. The investigation was expanded to include Group VII transition metals Mn and Re, and using the same methodology, the manganese complexes isolated included [MnCp(CO2{C(OR)Fc}] (22: R = Et, 24: R = TiCp2Cl), 23 [μ- Fe{C5H4C(OEt)MnCp(CO) 2}2] and 25 [{μ-TiCp2O2-O,O’}{μ- Fe(C5H4)2- C,C’}[CMnCp(CO) 2}2]. The different reactivity of the binary dirhenium decacarbonyl precursor complex, compared to that of the Group VI complexes, resulted in the formation of a range of complexes. The target compounds [Re2 (CO) 9{C(OR)Fc}] (26: R = Et, 31: R = TiCp2Cl), 27 [μ-Fe{C5H4C(OEt)Re2 (CO) 9}2] and 33 [{μ- TiCp2O2-O,O’}{μ-Fe(C5H4)2-C,C’}[CRe2 (CO) 9}2] were isolated displaying a variety of different geometric isomers. In addition, acyl (30) and aldehyde (32) decomposition products, as well as hydrido (29), and hydrido acyl hydroxycarbene (34) complexes and the unique dichloro-bridged biscarbene complex (28) were also characterized. Most of these complexes displayed Re-Re bond breaking, and two probable mechanisms, either radical or ionic, were proposed involving either hydrogen transfer or protonation followed by hydrolysis. Finally, the structural features and their relevance to bonding in the carbene cluster compounds of the Group VI transition metals were investigated as they represent indicators of possible reactivity sites in multimetal carbene assemblies. The possibility of using DFT calculations to quantify the effect of metal-containing substituents on the carbene ligands was tested and correlated with experimental parameters by employing methods such as vibrational spectroscopy, molecular orbital analysis, and cyclic voltammetry. The best results were obtained from the cyclic voltammetric studies, where the localized metal centre’s oxidation potential correlated to both the calculated HOMO energy, and the effect of both the heteroatom substituent and the (hetero)arene substituent, as well as different combinations of the above. / Thesis (PhD)--University of Pretoria, 2010. / Chemistry / unrestricted
82

Development of Tetrathiafulvalene Fused N-Heterocyclic Carbene Compounds

Robinson, William J., III January 2020 (has links)
No description available.
83

Silver N-Heterocyclic Carbenes

Garrison, Jered C. 26 September 2005 (has links)
No description available.
84

Spiro Oxadiazolines - Source of Cyclic Dioxa Carbenes

Jose, Besy 10 1900 (has links)
<p> It is known that alkoxyoxadiazolines undergo thermal decomposition to form carbenes via an ylide intermediate. This project involved the preparation and subsequent thermolysis of spirooxadiazolines of type 4.</p> <p> Spiro oxadiazoline (4) was prepared by oxidation of (3) with lead tetraacetate in dichloromethane. The first order rate constant for the thermolysis of 4b in benzene at 111°C is determined. The primary thermolysis products were found to be acetone, nitrogen and the cyclic dioxacarbene (5). Formation of (5) was confirmed by various trapping experiments. (See Diagram in Thesis)</p> / Thesis / Master of Science (MSc)
85

Studies of carbene-solvent interactions

Tippmann, Eric M. January 2003 (has links)
No description available.
86

SERS Study of N-heterocyclic Carbenes Absorbed on a Silver Electrode

Ge, Mengxin 26 September 2022 (has links)
SERS (surface-enhanced Raman spectroscopy) has the potential to be used in a variety of commercial and basic applications, which often rely on molecules that are bound to a nanostructured metal surface. Thiols are usually used as the intermediate to modify the substrate surface for SERS. In recent years, N-heterocyclic carbene (NHC) has been introduced as an alternative approach for metal surface modification. Nanostructured gold surfaces suitable for SERS had been modified by NHC species. Those studies showed the promising of the NHC modification route for the fabrication of a robust platform for SERS. The objective of this work is to explore the SERS characteristics of NHC species on silver surfaces. The interactions between two different NHC molecules and a nanostructured silver surface, instead of a gold surface, were studied for the first time. The experiments were realized in electrochemical conditions, using a three-electrodes system, to fully test the stability of the NHC-modified surfaces. The SERS spectra were compared to theoretical calculations and normal Raman in order to identify the vibrational characteristics of the NHC molecules. The effects of different NHC molecule substituents on the electrochemical stability of the surface were also discussed. The results showed that NHC molecules can be decomposed on the silver surface easily under electrochemical conditions. This contrast with the observations in gold, where the NHC monolayers showed a high level of stability. This work also discusses potential side products which may be derived from the decomposition of the NHC molecules. Raman spectra of potential side products were collected and compared to the NHC SERS collected under electrochemical control at different potentials. This study provides insights into the influence of the substituents at the NHC on their stability under the electrochemical condition, which should guide the development of future applications. / Graduate
87

Synthesis and reactivity of low coordinate nickel(I) complexes bearing ring expanded N-heterocyclic carbene ligands

Poulten, Rebecca January 2015 (has links)
This thesis describes the development of nickel(I) complexes incorporating ring expanded N-heterocyclic carbene (RE NHC) ligands and examines their electronic characterisation, activation of O2, reactivity and catalytic applications. A series of three coordinate, paramagnetic Ni(I) complexes of the form Ni(RE NHC)(PPh3)Br (1 – 10) were prepared by comproportionation of Ni(COD)2 and Ni(PPh3)2Br2 in the presence of RE NHCs. The RE NHCs employed varied in the degree of ring expansion (6-, 7- and 8-membered), extent of N-substituent steric bulk (Mes, oTol, oAnis) and the donor/acceptor properties of the carbene (diamino vs. diamido). EPR and DFT electronic characterisation of 1 – 10 confirmed that the unpaired electron was located on the nickel ion in a mixed orbital of predominantly 3dz2 character. Yellow solutions of 1 or 6 (RE NHC = 6Mes and 7Mes respectively) immediately became purple in the presence of O2 due to O2 activation and incorporation of the oxygen atoms as bridging ligands resulting from C-H activation/oxygenation of an RE NHC N-substituent. This generated the dimeric Ni(II) complexes Ni(6/7Mes)Br(µ-OH)(µ-O-6/7Mes)’NiBr (6Mes = 13; 7Mes = 14). Mass spectrometry demonstrated that the doubly activated complexes [NiBr(µ-O-6/7Mes)’]2 (15 and 16 respectively) were also formed in the reactions. UV-vis spectroscopy revealed the reactions took place rapidly, even at 190 K. Contrasting reactivity was observed when 2 or 7, bearing the less sterically encumbered N-oTol substituents 6oTol and 7oTol respectively, were exposed to O2, which led to the ligand redistribution products NiII(6/7oTol)(PPh3)Br2 (17 and 18 respectively). The less electron rich diamido analogue containing 6MesDAC (5), underwent dissociation and oxidation of the RE NHC and PPh3 ligands. Attempts to abstract the bromide from 1 generated novel two and three coordinate Ni(I) products. Reaction with additional 6Mes produced the two coordinate cation [Ni(6Mes)2]+ (19), which could be reduced with KC8 to Ni(6Mes)2 (20). SQUID analysis of 19 revealed it to be the first example of a nickel containing mononuclear single molecular magnet (SMM). Addition of [Et3Si]+ to 1 followed by work up in toluene led to the isolation of the Ni(I)-(η2-toluene) complex [Ni(6Mes)(η2-C6H5CH3)]+ (21). Mesitylene generated the analogous [Ni(6Mes)(η2-C6H3(CH3)3)]+ (23), but neither 1,4-xylene nor naphthalene gave isolable products. In all cases, cocrystallisation of [6MesH]+…arene was observed in variable amounts, which compromised reaction studies of the Ni-arene complexes. Removal of bromide from 1 with TlPF6 in THF generated the solvent coordinated cationic species [Ni(6Mes)(PPh3)(THF)]+ (24). Attempts to remove the ligated THF molecule were unsuccessful, however, it could be directly substituted by CO to form [Ni(6Mes)(PPh3)(CO)]+ (26). Similarly to 1, complex 24 activated O2, generating a dimer analogous to the singly activated complex 13 (Ni(6Mes)(PPh3)(µ-OH)(µ-O-6Mes)’NiBr (25)). Reactivity of 1 with NaBH4 produced [Ni(6Mes)(κ2-BH4)]2 (28), a Ni(I) dimer bridged by two BH4 ligands. The catalytic efficiency of neutral 1 in Kumada cross-coupling of aryl halides and PhMgCl or MesMgBr was probed. Of note was the high activity towards both aryl chlorides and aryl fluorides. Comparisons with cationic 24, larger 7- (7) and 8-membered ring (8 and 9) variants and the Ni(II) complexes Ni(6Mes/6oTol/7oTol)(PPh3)Br2 (29, 17 and 18 respectively) revealed that 1 exhibited the highest reactivity of all the precursors.
88

N-Heterocyclic carbene-metal complexes derived from imidazolium-linked cyclophane and biimidazolium salts

Hesler, Valerie Jane January 2008 (has links)
This thesis presents an investigation into the synthesis of metal complexes of (Nheterocyclic carbene)-based cyclophanes. There were three main areas of focus: synthesis and complexation of bis(4,5-dihydroimidazolium) salts; the synthesis and complexation of phenol-functionalised imidazolium cyclophanes; and the synthesis and complexation of (N-heterocyclic carbene)-based cyclophanes by C-C bond activation of biimidazolium salts with electron-rich metals. The synthesis of xylyl-linked bis(4,5-dihydroimidazolium) salts was investigated. Attempts to prepare these compounds by the cyclisation of a tetraamine (linear or macrocyclic) were unsuccessful due difficulties in preparing the tetraamines. The target compounds could be prepared by adapting the methods developed for the synthesis of bis(imidazolium) salts however problems associated with purification and stability of the products prevented complexation studies. A series of phenol-, phenoxide- and anisole-functionalised imidazolium cyclophanes were prepared. Their structural properties were investigated using dynamic nmr studies and X-ray crystallography. Complexation of the functionalised cyclophanes was investigated. The phenol cyclophane I formed a dinuclear complex with mercury(II). This complex is the first example of a complex derived from a phenol-functionalised imidazolium cyclophane. However the anisole cyclophane II and the unsymmetrical phenol/ortho cyclophane III were unable to form complexes possibly due to steric hindrance and instability of the cyclophane respectively. Preliminary complexation studies of the bis(imidazolium)phenol V suggested that complexation with palladium(II) and mercury(II) were possible but more work is required to determine the optimum reaction conditions. A series of biimidazolium salts VI (both new and known) were prepared. Previously reported biimidazolium salts have very low solubility in common solvents therefore the incorporation of long alkyl chains to the bridging group was investigated as a means to improve the solubility. The structure of the salts was explored using a range of techniques including dynamic nmr spectroscopy, cyclic voltammetry, UV/Visible spectroscopy, X-ray crystallography and mass spectrometry. Some of the biimidazolium salts were able to rotate about the C2-C2' bond and the free energy of activation for this process was estimated using dynamic nmr studies. C-C bond activation of the biimidazolium salts with palladium(0) was used to form a series of palladium(II) complexes (VII) of (NHC)-based cyclophanes. These reactions are the first examples of the synthesis of bis(NHC) complexes by C-C bond activation. The reactivity of the biimidazolium salts with palladium(0) was compared to their solution structure and it was found that only the biimidazolium that were able to rotate about the C2-C2' bond could react with palladium(0).
89

New olefin metathesis catalysts with fluorinated NHC ligands : synthesis and catalytic activity / Nouveaux catalyseurs de métathèse des oléfines à ligands carbènes N-hétérocycliques fluorés : synthèse et activité catalytique

Masoud, Salekh 14 December 2017 (has links)
La préparation efficace d’une nouvelle famille de sels de 1,3-bis(aryl)-4,5-dihydroimidazolium non symétriques comprenant un groupement encombrant hexafluoroisopropylmethoxy en position para- ou ortho- sur l’un des substituants N-aryle a été développée. De nouveaux sels d’imidazolium contenant un substituant fluoroalkyle en position ortho d’un des substituant aryle ont aussi été synthétisés. Ces sels sont d’excellents précurseurs de carbènes N-hétérocycliques qui ont permis l’accès efficace à une série de nouveaux complexes carbéniques du ruthénium à ligands NHC non symétriques. La méthode repose sur la génération in situ du carbène par traitement des sels d’imidazolium avec le potassium hexamethyldisilazide suivie d’un échange du ligand tricyclohexylphosphine à partir des complexes de Grubbs et Hoveyda de première génération. L’activité de ces nouveaux complexes a été étudiée sur des réactions modèles intra- et intermoléculaires de métathèse des oléfines. Il a été montré que la plupart des complexes synthétisés ont de bonnes activités catalytiques en fermeture de cycle à partir du diallylmalonate d’éthyle et en métathèse croisée de l’allylbenzène avec le 1,3-diacetoxybut-2-ene. Leurs performances sont comparables à celles des catalyseurs de Grubbs et Hoveyda de seconde génération, avec toutefois quelques différences dans les étapes d’initiation. Les effets structuraux et électroniques des ligands NHC non symétriques sur la réactivité des nouveaux complexes du ruthénium ont été étudiés. En particulier, il a été montré que les catalyseurs de type Hoveyda porteurs de ligands monosubstitués par un groupement fluoroalkyle en position ortho d’un des substituant N-aryle présentent une initiation très rapide dans les réactions de métathèse croisée. Au contraire, les complexes porteurs d’un groupement donneur alkyle ont montré une activité catalytique très faible, comme par exemple le complexe porteur d’un ligand (tert-butyl)NHC qui s’est révélé inerte à la fois en fermeture de cycle et métathèse croisée. Les complexes porteurs d’un ligand NHC symétrique avec deux groupes hexafluoroisopropylmethoxy ont des activités catalytiques nettement inférieures à leurs homologues non symétriques, révélant ainsi la forte influence de l’absence de symétrie du ligand carbène NHC dans l’activité catalytique des complexes. / An efficient approach to a new family of unsymmetrical 1,3-bis(aryl)-4,5-dihydroimidazolium salts comprising bulky hexafluoroisopropylmethoxy group in para- or ortho-position in one of the N-aryl substituents has been developed. New imidazolinium salts with fluoroalkyl-containing mono-ortho-aryl substituent at one of the nitrogen atom have also been synthesized. It was found that these imidazolinium salts are effective NHC precursors and provided an efficient access to a series of new ruthenium carbene complexes with unsymmetrical fluorinated NHC ligands. The method involves in situ generation of the carbene via treatment of the starting salts with potassium hexamethyldisilazide and subsequent ligand exchange reaction with PCy3-containing first generation Grubbs and Hoveyda complexes. The catalytic activity of the new complexes has been investigated on model reactions of intra- and intermolecular olefin metathesis. It was found that most of the synthesized complexes exhibited high activity in cyclization of diethyl diallylmalonate and in cross metathesis of allyl benzene with 1,3-diacetoxybut-2-ene. Their performance has proved to be comparable with commonly used second generation Grubbs and Hoveyda catalysts, with sometimes some differences in the initiation step. Structural and electronic impact of fluorinated unsymmetrical NHC on reactivity of new ruthenium complexes has been studied. In particular, it was revealed that Hoveyda type catalysts with mono-ortho-aryl substituted NHC ligands have demonstrated very high initiation rate in CM reactions. On the contrary, catalysts with more donating N-alkyl NHCs have displayed low activity; for instance, the N-tert-butyl substituted complex has proved to be absolutely inert both in RCM and CM reactions. Symmetrical ruthenium carbene complexes bearing NHC ligands with two hexafluoroisopropylmethoxy group in para-positions of N-aryl moieties are significantly inferior in reactivity with respect to their asymmetric counterparts showing the strong influence of the desymmetrization factor on catalytic activity.
90

N-Heterocyclic Carbenes of the Late Transition Metals: A Computational and Structural Database Study

Baba, Eduard 05 1900 (has links)
A computational chemistry analysis combined with a crystallographic database study of the bonding in late transition metal N-heterocyclic carbene (NHC) complexes is reported. The results illustrate a metal-carbon bond for these complexes, approximately 4% shorter than that of a M-C single bond found in metal alkyl complexes. As a consequence of this result, two hypotheses are investigated. The first hypothesis explores the possibility of multiple-bond character in the metal-carbon linkage of the NHC complex, and the second, considers the change in the hybridization of the carbenoid carbon to incorporate more p character. The latter hypothesis is supported by the results. Analysis of these complexes using the natural bond orbital method evinces NHC ligands possessing trans influence.

Page generated in 0.0302 seconds