• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Palladium(II)-Catalyzed Oxidative Cyclization Strategies : Selective Formation of New C-C and C-N Bonds

Persson, Andreas K. Å. January 2012 (has links)
The main focus of this thesis has been directed towards preparation and oxidative carbocyclization of en-, dien- and aza-enallenes. In the first part of this thesis, a stereoselective oxidative carbocyclization of dienallenes was realized. By employing cheap and readily available palladium trifluoroacetate we were able to efficiently cyclize a variety of dienallenes into hydroxylated carbocycles in high yield and high selectivity. This oxidative process was compatible with two different reoxidation protocols: one relying on p-benzoquinone (BQ) as the oxidant and the other employing molecular oxygen as the oxidant. In the second part of the thesis the carbocyclization methodology was extended to include carbocyclization of aza-enallenes. This was achieved in two distinct steps. First, a copper-catalyzed coupling of allylic sulfonamides with bromoallenes was developed, giving access to the corresponding aza-enallenes. Subjecting these substrates to catalytic amounts of palladium acetate, along with BQ as the oxidant, rendered N-heterocycles in good yield. The reactivity of these N-heterocycles towards activated dienophiles was later exploited in a tandem (aerobic) oxidative carbocyclization/Diels-Alder reaction. The third topic involves efficient oxidative arylative/borylative carbocyclization of enallenes. These reactions, catalyzed by palladium acetate, relies on transmetallation of a (σ-alkyl)palladium(II) intermediate with diboranes or arylboronic acids. With this novel methodology we were able to obtain an array of arylated or borylated carbocycles, as single diastereomers, in high yield. Finally, we developed a palladium(II)-catalyzed cyclization of allylic carbamates. This mild, operationally simple, and scalable catalytic reaction opens up access to an array of oxazolidinones in high yield and excellent diastereoselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.</p>
2

Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds

Jiang, Tuo January 2014 (has links)
Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions. The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields. The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products. The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
3

Gold(I)-Catalyzed Synthesis of Polycyclic Frameworks Related to Terpenes: Selective Divergent Synthesis of Fused Carbocycles

Barabe, Francis 07 November 2013 (has links)
Gold catalysis has become an important tool to achieve highly chemoselective p-acid activation. Exceptional reactivity and selectivity are often encountered under mild reaction conditions. These properties have made gold(I) complexes suitable catalysts for tremendous applications in the total synthesis of natural products. The first chapter will highlight a number of total syntheses using gold catalysis as a key step. The second chapter will cover our application of the gold(I)-catalyzed 6-endo-dig carbocyclization for the synthesis of bridgehead-substituted scaffolds and its use toward the synthesis of PPAP natural products. This research has opened our eyes to the utility of biphenylphosphine ligands, particularly JohnPhos, in gold(I)-catalysis. The reactivity and selectivity exhibited by gold(I) complexes is modulated by the nature of the ancillary ligand. Recent research rationalizes the impact of these ligands on the divergent reactivity observed between cationic and carbenoid intermediates. Our desire to favor the 6-endo-dig pathway has led us toward the discovery of another example of the diagonal reactivity that NHC carbene and biphenylphosphine ligands can bring to gold(I)-catalysis. Chapter three will explain the development of a selective gold-catalyzed synthesis of fused carbocycles . Our selective divergent synthesis of fused carbocycles, combined with the Diels–Alder reaction, has brought new synthetic opportunities. Chapter four will describe our approach toward the synthesis of various polycyclic diterpene-related frameworks. Starting with a unique linear precursor, we have developed a new “one-pot” process for the synthesis of three different polycyclic compounds related to the terpenoid family. The facile modulation of the linear precursor and the use of different dienophiles during the Diels–Alder reaction could enable the synthesis of diverse polycyclic analogues based on three principal frameworks. The gold(I)-catalyzed synthesis of fused carbocycles reached some limitations during our study. Regioselective control was found to be substantially more challenging, with terminal alkynes or alkynes bearing a sterically and electronically neutral methyl substituent. In chapter five, we will discuss how the complementarity of silver(I) catalysis to gold(I) catalysis enabled the selective divergent synthesis of three different fused carbocycles from a unique precursor. Moreover, copper(I) catalysis has given access to the 6-endo-dig pathway on terminal alkynes without the formation of a vinylidene intermediate.
4

Gold(I)-Catalyzed Synthesis of Polycyclic Frameworks Related to Terpenes: Selective Divergent Synthesis of Fused Carbocycles

Barabe, Francis January 2013 (has links)
Gold catalysis has become an important tool to achieve highly chemoselective p-acid activation. Exceptional reactivity and selectivity are often encountered under mild reaction conditions. These properties have made gold(I) complexes suitable catalysts for tremendous applications in the total synthesis of natural products. The first chapter will highlight a number of total syntheses using gold catalysis as a key step. The second chapter will cover our application of the gold(I)-catalyzed 6-endo-dig carbocyclization for the synthesis of bridgehead-substituted scaffolds and its use toward the synthesis of PPAP natural products. This research has opened our eyes to the utility of biphenylphosphine ligands, particularly JohnPhos, in gold(I)-catalysis. The reactivity and selectivity exhibited by gold(I) complexes is modulated by the nature of the ancillary ligand. Recent research rationalizes the impact of these ligands on the divergent reactivity observed between cationic and carbenoid intermediates. Our desire to favor the 6-endo-dig pathway has led us toward the discovery of another example of the diagonal reactivity that NHC carbene and biphenylphosphine ligands can bring to gold(I)-catalysis. Chapter three will explain the development of a selective gold-catalyzed synthesis of fused carbocycles . Our selective divergent synthesis of fused carbocycles, combined with the Diels–Alder reaction, has brought new synthetic opportunities. Chapter four will describe our approach toward the synthesis of various polycyclic diterpene-related frameworks. Starting with a unique linear precursor, we have developed a new “one-pot” process for the synthesis of three different polycyclic compounds related to the terpenoid family. The facile modulation of the linear precursor and the use of different dienophiles during the Diels–Alder reaction could enable the synthesis of diverse polycyclic analogues based on three principal frameworks. The gold(I)-catalyzed synthesis of fused carbocycles reached some limitations during our study. Regioselective control was found to be substantially more challenging, with terminal alkynes or alkynes bearing a sterically and electronically neutral methyl substituent. In chapter five, we will discuss how the complementarity of silver(I) catalysis to gold(I) catalysis enabled the selective divergent synthesis of three different fused carbocycles from a unique precursor. Moreover, copper(I) catalysis has given access to the 6-endo-dig pathway on terminal alkynes without the formation of a vinylidene intermediate.
5

Silaborations of Unsaturated Compounds

Gerdin, Martin January 2008 (has links)
This thesis deals with the development of transition metal-catalyzed silaborations of 1,3-dienes and 1,6-enynes. The first part of the thesis describes the development of the enantioselective 1,4-silaboration of 1,3-cyclohexadiene. A number of chiral metal-ligand complexes were evaluated. Up to 82% enantiomeric excess was obtained using a catalyst system derived from Pt(acac)2 and a phosphoramidite ligand. The product formed was employed in allylborations of aldehydes, giving homo-allylic alcohols in good yields with good to moderate diastereoselectivity. In attempts to widen the scope of silaborations to include acyclic, terminally substituted 1,3-dienes, products from H-B exchange with, and H-Si addition to, the dienes were obtained. The second part describes the development of silaborative carbocyclization of 1,6-enynes. A Pd N-heterocylic carbene complex was found to be effective for the silaborative carbocyclization of unsubstituted enynes, giving the products in good to excellent yields. Employing terminally substituted enynes resulted in low or no yields. The last part describes investigations into the reaction mechanisms of the processes developed in the first part. It was found that the silylborane undergoes oxidative addition to a Pt(0) complex generated from Pt(acac)2 and DIBALH. After insertion of 1,3-cyclohexadiene into the Pt-B bond a π-allyl complex was observed experimentally. In the addition of silylborane to acyclic, terminally substituted, 1,3-dienes it was shown by deuterium labeling experiments that one diene loses a hydride via H-B exchange and that this hydride is then added to another diene via H-Si addition. A reaction mechanism was proposed for this process. / QC 20100924

Page generated in 0.0954 seconds