• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.
2

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.
3

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.
4

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. January 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.

Page generated in 0.033 seconds