• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 564
  • 247
  • 106
  • 90
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1386
  • 1386
  • 248
  • 244
  • 169
  • 147
  • 144
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 101
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

The influence of multi-walled carbon nanotubes on the properties of polypropylene nanocomposite. The enhancement of dispersion and alignment of multiwalled carbon nanotube in polypropylene nanocomposite and its effect on the mechanical, thermal, rheological and electrical properties.

Ezat, Gulstan S. January 2012 (has links)
Carbon nanotubes are known as ideal fillers for polymer systems; the main advantage of carbon nanotubes over other nano-reinforcing particles is the combination of superior strength and stiffness with large aspect ratio. Carbon nanotubes may improve the mechanical, electrical and thermal properties of polymers, but to realise their potential in polymer systems uniform dispersion, strong interfacial adhesion and alignment of nanotubes within the polymer matrix are necessary. These properties are not easy to achieve and they are key challenges in producing CNT/Polymer system. This research was carried out in an attempt to understand how the properties of CNT/Polymer composite can be optimised by manipulation of additives, compounding and postcompounding conditions. Polypropylene/Multi-Walled Carbon Nanotube (PP/MCNT) composites were prepared by conventional twin screw extrusion. Dispersants and compatibilisers were used to establish good interaction between filler and polymer. Several different extruder screw configurations were designed and the properties of PP/MCNT composite prepared by each configuration investigated. The results indicated that the addition of carbon nanotubes without additives enhanced mechanical, electrical and thermal properties of polypropylene polymer. Incorporation of compatibilisers into PP/MCNT improved the stiffness but decreased the strength of the nanocomposite, whilst addition of dispersants decreased the mechanical properties of the nanocomposite. Addition of both additives at high concentration improved electrical conductivity and induced electrical percolation in the nanocomposite. Extruder screw configuration was found to have significant effect on the electrical conductivity whilst only slightly affecting mechanical properties of the nanocomposite, possibly due to the competition between dispersion and degradation of polymer chains and possible reduction of carbon nanotube length by intensive shear during compounding. The use of screw configuration with high mixing intensity promoted the dispersion of nanotubes and favoured the conduction process in the nanocomposite. Finally in an attempt to improve dispersion and alignment of carbon nanotubes, compounded PP/MCNT composite was subjected to micromoulding, fibre spinning and biaxial stretching processes and the resultant properties investigated. Application of post-compounding process was found to have significant effect on mechanical and rheological properties of the nanocomposite. Stiffness and strength of the nanocomposites treated by post-compounding processes were found to increase by up to 160% and 300%, respectively. The reinforcement effect of carbon nanotubes in the stretched nanocomposites was found to be the greatest. Rheological analysis suggested that the application of post-compounding processes enhanced dispersion of carbon nanotubes within the nanocomposite. Overall, this finding of this research has shown that carbon nanotubes can be incorporated into polypropylene using conventional equipment to provide significant improvement in properties. By careful choices of additives, compounding and postcompounding conditions, specific properties can be further enhanced. / Ministry of higher education in Kurdistan region in Iraq.
342

High yield assembly and electron transport investigation of semiconducting-rich local-gated carbon nanotube field effect transistors

Kormondy, Kristy 01 May 2011 (has links)
Single-walled carbon nanotubes (SWNTs) are ideal for use in nanoelectronic devices because of their high current density, mobility and subthreshold swing. However, assembly methods must be developed to reproducibly align all-semiconducting SWNTs at specific locations with individually addressable gates for future integrated circuits. We show high yield assembly of local-gated semiconducting SWNTs assembled via AC-dielectrophoresis (DEP). Using individual local gates and scaling the gate oxide shows faster switching behavior and lower power consumption. The devices were assembled by DEP between prefabricated Pd source and drain electrodes with a thin Al/Al2O3 gate in the middle, and the electrical characteristics were measured before anneal and after anneal. Detailed electron transport investigations on the devices show that 99% display good FET behavior, with an average threshold voltage of 1V, subthreshold swing as low as 140 mV/dec, and on/off current ratio as high as 8x105. Assembly yield can also be increased to 85% by considering devices where 2-5 SWNT bridge the gap between source and drain electrode. To examine the characteristics of devices bridged by more than one SWNT, similar electron transport measurements were taken for 35 devices with electrodes bridged by 2-3 SWNT and 13 devices connected by 4-5 SWNT. This high yield directed assembly of local-gated SWNT-FETs via DEP may facilitate large scale fabrication of CMOS compatible nanoelectronic devices.
343

Engineering Nanocatalysts for Selective Growth of Carbon Nanotubes

Chiang, Wei-Hung 02 April 2009 (has links)
No description available.
344

High Strength E-Glass/CNF Fibers Nanocomposite

Abu-Zahra, Esam January 2007 (has links)
No description available.
345

Electrically-tunable Colors of Chiral Liquid Crystals for Photonic and Display Applications

Lu, Shin-Ying 16 July 2010 (has links)
No description available.
346

DISPERSION OF CARBON NANOTUBE CLUSTERS VIA THE RAPID VAPORIZATION OF INTERSTITIAL LIQUID

Craig, Glenn R. 11 June 2014 (has links)
No description available.
347

Electrochemical Characterization of Metal Catalyst Free Carbon Nanotube Electrode and Its Application on Heavy Metal Detection

Yue, Wei January 2014 (has links)
No description available.
348

Principal Component Analysis Approach for Determination of Stroke Protein Biomarkers and Modified Atmospheric Pressure Chemical Ionization Source Development for Volatile Analyses

Nahan, Keaton 15 June 2017 (has links)
No description available.
349

CARBON NANOCOMPOSITE MATERIALS

PAMMI, SRI LAXMI January 2003 (has links)
No description available.
350

SURFACE MODIFICATION OF NANOPARTICLES AND CARBON NANOFIBERS BY PLASMA POLYMERIZATION AND PROPERTIES CHARACTERIZATION

GAO, YONG 06 October 2004 (has links)
No description available.

Page generated in 0.0481 seconds