• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Small but powerful

Scharroba, Anika 19 May 2017 (has links)
In der vorliegenden Arbeit wurden die Einflüsse der landwirtschaftlichen Nutzung auf die Struktur und Biomasse von Nematoden entlang eines Tiefengradientens und innerhalb zweier Vegetationsperioden an einem Ackerstandort untersucht. Die Freilandanalyse der Nematodengemeinschaft wies auf ein mit Nährstoffen angereichertes und gestörtes Ökosystem, mit einer geringen Diversität, hin. Entlang des Tiefengradienten bildeten die Nematoden Metacommunities, welche Umweltgegebenheiten wie Nahrungsquellen und abiotischen Faktoren widerspiegeln. Signifikant höhere Biomassen wurden unter Weizen im Vergleich zu Mais als Ackerfrucht beobachtet. Die Streuapplikation induzierte einen „bottom-up“ Effekt mit größeren Biomassen in den niedrigen als in den höheren trophischen Stufen. Die Nematoden Biomassen sowie die faunistischen Indizes (Channel Index, Enrichment Index) zeigten, dass der Kohlenstofffluss im Bakterienkanal des Bodens dominierte. Allerdings deckte das 13C Pulse-Labelling Experiment im Feld auf, dass der Kohlenstofffluss durch die Pilzgemeinschaft sowie die pilzfressenden Nematoden wesentlich höhere Umsatzraten aufweist. In einem 14C-Laborexperiment wurde ein vollständiges Budget des Flusses von wurzelbürtigem Kohlenstoff in das Nahrungsnetz der Nematoden bestimmt. Hierbei wiesen die pflanzenparasitären Nematoden die höchsten 14C-Gehalte innerhalb weniger Tage auf, da sie direkt an den Wurzeln fressen und über die Herbivorenkette den Nährstoffzyklus im Boden eröffnen. / The present research considered the effects of agricultural management practice on the nematode community structure and biomass in three different depths and two successive vegetation periods at an arable field site. The resource quality was manipulated by crop plant and organic amendment, to investigate the major soil carbon pathways based on roots, bacteria and fungi. The nematode community analysis pointed to a highly enriched and disturbed ecosystem with low biodiversity. Along the depth gradient the nematodes formed distinct metacommunities, reflecting resource availability and abiotic environmental factors. Wheat supported significantly greater nematode biomass than maize. The litter amendment induced bottom-up effects, with greater biomass allocation at lower than at higher trophic levels. The biomass of nematode families as well as faunal indices (Channel Index, Enrichment Index) revealed a predominance of the bacterial carbon channel in the arable soil. A 13C pulse-labelling experiment investigating the flux of root- derived C into the soil food web revealed high turnover rates in the fungal carbon pathway. This was evident for soil fungi as well as for fungal-feeding nematodes and contradicts general assumptions of a more active bacterial pathway in arable soils. A laboratory experiment with 14C isotope was used to compile a complete budget for the root-derived carbon in the nematode food web. Here plant-feeding nematodes, which feed on living plant roots, thereby opening the root C cycling into the food web, showed highest amounts of 14C allocation within a few days.
22

Quantifying organic carbon fluxes from upland peat

Do, Phai Duy January 2013 (has links)
Present organic carbon fluxes from an upland peat catchment were quantified through measurement of in-situ direct and indirect greenhouse gas fluxes. To predict future greenhouse gas (GHG) fluxes, peat from eroded (E) and uneroded (U) site of an upland peat catchment was characterized.Composition of peat from E and U sites at the Crowden Great Brook catchment, Peak District Nation Park, UK that was characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) at 700 oC. Pyrolysis products of the peat were then classified using the Vancampenhout classification into 6 compound classes - viz. aromatic and polyaromatic (Ar), phenols (Ph), lignin compounds (Lg), soil lipids (Lp), polysaccharide compounds (Ps) and N-compounds (N). There was no significant difference in the composition between the eroded and uneroded sites within the study area or between peats from different depths within each site. Nevertheless, there was a significant difference between sites in the proportions of Sphagnum that had contributed to the peat. Pyrolysis products of the peat were also classified into pedogenic (Pd) and aquagenic (Aq) OC – the mean percentage of Pd in both eroded and uneroded peats was 43.93 ± 4.30 % with the balance of the OC classified as Aq.Greenhouse gas (GHG) fluxes were quantified directly by in-situ continuous measurement of GHG was carried out at the E and U sites of the catchment using a GasClam: mean in-situ gas concentrations of CH4 (1.30 ± 0.04 % v/v (E), 0.59 ± 0.05 % v/v (U) and CO2 (8.83 ± 0.22 % v/v (E), 1.77 ± 0.03 % v/v (U)) were observed, with both the CH4 and CO2 concentrations apparently unrelated to atmospheric pressure and temperature changes. Laboratory measurements of ex-situ gas production - for both CH4 and CO2 this was higher for U site soils than for E site soils. At the U site, maximum production rates of both CH4 (46.11±1.47 mMol t-1 day-1) and CO2 (45.56 ± 10.19 mMol t-1 day-1) were observed for 0-50 cm depth in soils. Increased temperature did not affect gas production, whilst increased oxygen increased gas production. The CH4/CO2 ratios observed in-situ are not similar to those observed in the ex-situ laboratory experiments; suggest that some caution is advised in interpreting the latter. However, the maximum OC loss of 2.3 wt. % observed after 20 weeks of ex-situ incubation is nevertheless consistent with the long-term degradation noted by Bellamy et al (1985) from organic-rich UK soils. Indirect greenhouse gas (GHG) fluxes were quantified through the mass flux of suspended organic carbon (SsOC) drained from studied catchments. The SsOC was quantified by interpolating and rating methods. Unfiltered (UF) organic carbon (OC) fluxes in 2010 were calculated to be 8.86 t/km2/yr for the eroded sub-catchment and 6.74 t/km2/yr for the uneroded sub-catchment. All the rating relationships have a large amount of scatter. Both UF OC and <0.2 µm fraction OC are positively correlated with discharge at the eroded site, whilst there is no discernable relationship with discharge at the uneroded site. SsOC is dominated by Pd type OC (95.23 ± 10.20 % from E; 92.84 ± 5.38 % from U) far more so than in sources of the peats, suggesting slower oxidation of Pd (cf. Aq) OC.

Page generated in 0.0772 seconds