• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 13
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 168
  • 168
  • 168
  • 38
  • 32
  • 27
  • 27
  • 26
  • 20
  • 19
  • 18
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Understanding changes in forest cover and carbon storage in early successional forests of the Pacific Northwest using USDA Forest Service FIA and multi-temporal Landsat data /

Schroeder, Todd A. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 158-169). Also available on the World Wide Web.
82

The role of nitrogen and phosphorus in carbon and nutrient cycling of bryophyte-dominated exosystems

Mielke, Nora January 2016 (has links)
Bryophytes form an important component of northern vegetation communities. Mosses efficiently capture aerially deposited nutrients, restricting nutrient availability to the soil. Given that key ecosystem processes of northern ecosystems are nutrient-limited, understanding nutrient cycling of the moss layer is key to understanding ecosystem nutrient and C cycling in these systems. However, the role of the moss layer in regulating ecosystem-scale nutrient and C cycling, while potentially significant, is largely unknown. The aim of this thesis is to investigate the effect of the relative availability of N and P on aspects of bryophyte nutrient uptake, retention and C acquisition. The hypothesis investigated is that the availability of one nutrient will influence the demand for the other and thereby moss nutrient acquisition and retention mechanisms. To test this hypothesis, various aspects of moss nutrient cycling in response to the relative availability of N and P were investigated. As the C cycle is tightly linked to the N and P cycles, the hypothesis extended to include bryophyte C assimilation and decomposition processes of an arctic tundra. Bryophyte nutrient demand was chiefly governed by the tissue N:P ratio. Consequently, nutrient uptake, both from aerially deposited nutrients and through moss-cyanobacteria N2 fixation, and nutrient losses after a simulated rainfall event were mostly in response to the relative availability of N and P rather than the availability of one nutrient alone. This thesis provides novel evidence that ectohydric mosses have the ability to internally translocate nutrients. In conjunction with efficient nutrient capture, this trait makes mosses strong nutrient sinks which are likely to exert considerable control over ecosystem nutrient cycling. The relative availability of N and P played a role in C uptake of mosses. Through the production of recalcitrant litter and their insulating effect on soil microclimate mosses exerted an influence over ecosystem C cycling.
83

The role of labile carbon and its interaction with humus form in controlling forest soil nitrogen cycling

Bradley, Robert L. January 1995 (has links)
No description available.
84

Climate, management, and forest type influences on carbon dynamics of West-Coast U.S. forests /

Hudiburg, Tara M. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 51-56). Also available on the World Wide Web.
85

Carbon dynamics in northern peatlands, Canada

Roehm, Charlotte L. January 2003 (has links)
Biogeochemical carbon dynamics govern the ability of peatlands to storecarbon. The processes controlling the balance between the photosyntheticuptake of C02 and respiration of C02 and CH4 back to the atmosphere remainunclear. A process-based ecosystem biogeochemical study, encompassing tracegas flux measurements, laboratory chemical analyses and field analyses, wasundertaken in order to better understand the carbon dynamics of borealCanadian peatlands.
86

Carbon biogeochemistry in northern peatlands : regulation by environmental and biogeochemical factors

Blodau, Christian. January 2001 (has links)
Nitrogen and sulfur deposition and water table level fluctuations have the potential to influence the C biogeochemistry in peatlands. Processes in peatland mesocosms were examined under steady state and dynamic conditions at different rates of N and S deposition, and water table levels. Net turnover rates were calculated from diffusive-advective mass-balances of pore water constituents. The limitations of the approach were tested with tracer experiments, which showed that diffusive-advective transport adequately described the flow of dissolved substances in peat columns. Incubation experiments quantified potential CO2, CH4, DOC, H2S and Fe 2+ production rates. / The vegetation assimilated most of the deposited nitrogen and sulfate when water table levels were high. Lowered water table levels resulted in seepage of sulfate to the water table, reduced the rates of photosynthesis, and increased the soil respiration rates. The potential for sulfate reduction was fairly large, despite small in situ sulfate concentrations, and the CO2 production could not be fully accounted for by known processes. Potential rates of sulfate reduction were large both in samples taken from the field site and from the controlled experiments. SO42- addition resulted partly in stimulation, partly in reduction of potential CH4 production rates suggesting that the relationship between sulfate reduction and methanogenesis is not exclusively competitive. / Changes of the water table level had in situ effects on CO2 and CH4 production rates not explainable by a distinction in aerobic/anaerobic conditions. Anaerobic in situ rates at greater depths were much lower when the water table was at the surface of the mesocosms than when it was at greater depths. This might have been due to in situ accumulation of CO2 and CH 4 in the deeper peat, which lowers the energy gain of anaerobic C mineralization. Flooding and draining of peat soil resulted in a delayed onset of CH 4 production, in increased anaerobic CO2 production and decreased CH4 production rates, and in the decoupling of gas exchange from production rates. These results document that fluctuations of environmental variables on short time scales have an impact on rates of C turnover in peat soils, and also limit the predictability of fluxes by statistical models.
87

Carbon biogeochemistry in northern peatlands : regulation by environmental and biogeochemical factors

Blodau, Christian January 2001 (has links)
No description available.
88

Carbon dynamics in northern peatlands, Canada

Roehm, Charlotte L. January 2003 (has links)
No description available.
89

Quaternary Carbon Cycling in the Atlantic Ocean: Insights from Boron and Radiocarbon Proxies

Farmer, Jesse Robert January 2016 (has links)
Earth’s climate is intricately linked to the carbon cycle through the radiative effect of atmospheric carbon dioxide. The ocean plays a central role in this climate-carbon system; as oceans store ∼50 times more carbon than the atmosphere, even small changes in ocean chemistry could greatly affect global climate. Understanding how the oceanic carbon reservoir has evolved across changing climates is thus critical for both constraining mechanisms of climate change and predicting impacts from anthropogenic carbon addition. This dissertation contributes to knowledge of the ocean carbon reservoir’s evolution across the last 1.5 million years of Earth’s history, with a particular focus on two key intervals of climatic change: 1) Present day, when a large, human-sourced perturbation to the carbon cycle is underway, the effects of which are not yet fully realized; and 2) The mid-Pleistocene transition (MPT; ∼900,000 years ago), when natural cycles of global warming and cooling increased in intensity and duration. Without direct observations for both these time intervals, I focus on documenting changes to ocean carbon chemistry using proxies for seawater composition. The primary tools for this purpose are boron concentrations (B/Ca ratios) and the boron isotopic composition (δ11B) of carbonate skeletons produced by marine organisms. These tools are rooted in the aqueous chemistry of boron, in which the speciation and isotopic composition of boron compounds change with seawater pH. To test present-day changes in the oceanic carbon reservoir, I measured δ11B on the calcitic skeletons of deep-sea corals (genus Keratoisis). Results show that while coral δ11B does correlate with deep ocean pH, δ11B variations within coral skeletons are too large to be explained by changes in deep ocean pH over the corals’ lifespan. These variations most likely reflect the biology of the coral organism, suggesting that δ11B measurements in Keraotisis cannot be utilized to track ocean pH until coral growth mechanisms are better understood. To complement these δ11B data, I measured the radiocarbon (14C) content of Keratoisis skeletons. Results show that coral skeletal 14C tightly correlates to the 14C content of the deep ocean, and that bamboo corals live for 50 to 300 years with radial growth rates of 10 to 80 μm per year. This supports the use of 14C for generating bamboo coral ages and growth rates, and for tracking perturbations to the 14C content of the deep ocean. Through my deep-sea coral study, I learned the importance of accurate and precise δ11B measurements for sound interpretations of ocean carbon chemistry. These interpretations necessitate highly specialized analysis protocols. While two protocols are commonly applied for δ11B measurements, existing comparisons found relatively large offsets between both protocols. To trace the cause and implications of this offset, I established a new δ11B measurement protocol and performed an internal comparison between the new and existing measurement protocols. Results confirm that carbonate δ11B values are significantly offset between techniques. Although the nature of this offset remains enigmatic, I show that both techniques show the same δ11B-to-pH sensitivity, and consistent pH estimates are obtained when a protocol-specific constant offset is applied. This suggests that both δ11B analysis protocols can be applied for reconstructing pH with equal confidence. To test for changes in the ocean carbon reservoir across the MPT, I investigated the B/Ca and Cd/Ca composition of the benthic foraminifer Cibicidoides wuellerstorfi to track deep ocean carbonate saturation state (∆[CO32−]) and nutrient inventories. At 4.3 km water depth in the South Atlantic Ocean, B/Ca abruptly decreased by 20% and Cd/Ca increased by 40% between 950 and 900 ka, equivalent to a 60 μmol/kg increase in abyssal ocean carbon storage. Coincident shifts in deep ocean circulation and atmospheric pCO2 around 900 ka suggest that a new regime of deep ocean carbon sequestration developed during the MPT. I argue that this regime was intricately linked with the increased magnitude and duration of glacial cycles following the MPT.
90

Variability in mesoscale circulation and its effects on zooplankton distribution in the Northern California Current /

Keister, Julie Eileen. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 126-138). Also available on the World Wide Web.

Page generated in 0.0608 seconds