• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D finite element model for predicting cutting forces in machining unidirectional carbon fiber reinforced polymer (CFRP) composites

Salehi, Amir Salar 04 January 2019 (has links)
Excellent properties of Carbon Fiber Reinforced Polymer (CFRP) composites are usually obtained in the direction at which carbon fibers are embedded in the polymeric matrix material. The outstanding properties of this material such as high strength to weight ratio, high stiffness and high resistance to corrosion can be tailored to meet specific design applications. Despite their excellent mechanical properties, application of CFRPs has been limited to more lucrative sectors such as aerospace and automotive industries. This is mainly due to the high costs involved in manufacturing of this material. Machining, milling and drilling, is a critical part of finishing stage of manufacturing process. Milling and drilling of CFRP is complicated due to the inhomogeneous nature of the material and extreme abrasiveness of carbon fibers. This is why CFRP parts are usually made near net shape. However, no matter how close they are produced to the final shape, there still is an inevitable need for some post machining to obtain dimensional accuracies and tolerances. Problems such as fiber-matrix debonding, subsurface damage, rapid tool wear, matrix cracking, fiber pull-out, and delamination are usually expected to occur in machining CFRPs. These problems can affect the dimensional accuracy and performance of the CFRP part in its future application. To improve the efficiency of the machining processes, i.e. to reduce the costs and increase the surface quality, researchers began studying machining Fiber Reinforced Polymer (FRP) composites. Studies into FRPs can be divided in three realms; analytical, experimental and numerical. Analytical models are only good for a limited range [0° – 75°] of Fiber Orientations , to be found from now on as “FO” in this thesis. Experimental studies are expensive and time consuming. Also, a wide variety of controlling parameters exist in an experimental machining study; including cutting parameters such as depth of cut, cutting speed, FO, spindle speed, feed rate as well as tool geometry parameters such as rake angle, clearance angle, and tool edge/nose radius. Furthermore, the powdery dust created during machining is known to cause serious health hazards for the operator. Numerical models, on the other hand, offer the unique capability of studying the complex interaction between the tool and workpiece as well as chip formation mechanisms during the cut. Large number of contributing parameters can be included in the numerical model without wasting material. Three main objectives of numerical models are to predict principal cutting force, thrust force and post-machining subsurface damage. Knowing these, one can work on optimization of machining process by tool geometry and path design. Previous numerical studies mainly focus on the orthogonal cutting of FRP composites. Thus, the existing models in the literature are two-dimensional (2D) for the most part. The 2D finite element models assume plain stress or strain condition. Accordingly, the reported results cannot be reliable and extendable to real cutting situations such as drilling and milling, where oblique cutting of the material occurs. Most of the numerical studies to date claim to predict the principle cutting forces fairly acceptable, yet not for the whole range of fiber orientations. Predicted thrust forces, on the other hand, are generally not in good agreement with experimental results at all. Subsurface damage is reported by some experimental studies and again only for a limited FO range. To address the lack of reliable force and subsurface damage prediction model for the whole FO range, this thesis aims to develop a 3D finite element model, in hope of capturing out-of-plane displacements during stress formation in different material phases (Fiber, Matrix and the Interface bonding). ABAQUS software was chosen as the most commonly used finite element simulation tool in the literature. In present work a user-defined material subroutine (VUMAT) is developed to simulate behavior of carbon fibers during the cut. Carbon fibers are assumed to behave transversely isotropic with brittle (perfectly elastic) fracture. Epoxy matrix is simulated with elasto-plastic behavior. Ductile and shear damage models are also incorporated for the matrix. Surface-based cohesive zone technique in ABAQUS is used to simulate the behavior of the zero-thickness bonding layer. The tool is modeled as a rigid body. Mechanical properties were extracted from the literature. The obtained numerical results are compared to the experimental and numerical data in literature. The model is capable of capturing principal forces very well. Cutting force increases with FO from zero to 45° and then decreases up to 135°. The simulated thrust forces are still underestimated mainly due to the fiber elastic recovery effect. Also, the developed 3D model is shown to capture the subsurface damage generally by means of a predefined dimensionless state variable called, Contact Damage (CSDMG). This variable varies between zero to one. It is stored at each time step and can be called out at the end of the analysis. It was shown that depth of fiber-matrix debonding increases with increase in FO. / Graduate
2

Size effect on shear strength of FRP reinforced concrete beams

Ashour, Ashraf, Kara, Ilker F. 07 December 2013 (has links)
yes / This paper presents test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer (CFRP) bars and without vertical shear reinforcement. All beams were tested under a two-point loading system to investigate shear behavior of CFRP reinforced concrete beams. Beam depth and amount of CFRP reinforcement were the main parameters investigated. All beams failed due to a sudden diagonal shear crack at almost 45°. A simplified, empirical expression for the shear capacity of FRP reinforced concrete members accounting for most influential parameters is developed based on the design-by-testing approach using a large database of 134 specimens collected from the literature including the beams tested in this study. The equations of six existing design standards for shear capacity of FRP reinforced concrete beams have also been evaluated using the large database collected. The existing shear design methods for FRP reinforced concrete beams give either conservative or unsafe predictions for many specimens in the database and their accuracy are mostly dependent on the effective depth and type of FRP reinforcement. On the other hand, the proposed equation provides reasonably accurate shear capacity predictions for a wide range of FRP reinforced concrete beams.
3

Improving Ductility And Shear Capacity Of Reinforced Concrete Columns With Carbon Fiber Reinforced Polymer

Ozcan, Okan 01 December 2009 (has links) (PDF)
The performance of reinforced concrete (RC) columns during recent earthquakes has clearly demonstrated the possible failures associated with inadequate confining reinforcement. The confinement reinforcement requirements of older codes were less stringent than present standards. Many studies were conducted by applying different retrofitting techniques for RC columns that have inadequate confinement reinforcement. A new retrofitting technique by means of Carbon Fiber Reinforced Polymer (CFRP) was developed and tested in many countries in the last decade. This technique is performed by CFRP wrapping the critical region of columns. The effectiveness of CFRP retrofitting technique was shown in many studies conducted worldwide. In Turkey, the frame members are considerably deficient from the seismic detailing point of view. Therefore, in order to use the CFRP retrofitting technique effectively in Turkey, experimental evidence is needed. This study investigates the performance of CFRP retrofitted RC columns with deficient confining steel and low concrete strength. It was concluded by experimental and analytical results that the CFRP retrofitting method can be implemented to seismically deficient columns. Moreover, two design approaches were proposed for CFRP retrofit design of columns considering safe design regulations.
4

Mechanical Properties Of Cfrp Anchorages

Ozdemir, Gokhan 01 February 2005 (has links) (PDF)
Due to inadequate lateral stiffness, many reinforced concrete buildings are highly damaged or collapsed in Turkey after the major earthquake. To improve the behavior of such buildings and to prevent them from collapse, repair and/or strengthening of some reinforced concrete elements is required. One of the strengthening techniques is the use of CFRP sheets on the existing hollow brick masonry infill. While using the CFRP sheets their attachment to both structural and non-structural members are provided by CFRP anchor dowels. In this study, by means of the prepared test setup, the pull-out strength capacities of CFRP anchor dowels are measured. The effects of concrete compressive strength, anchorage depth, anchorage diameter, and number of fibers on the tensile strength capacity of CFRP anchor dowel are studied.
5

Sagging and hogging strengthening of continuous reinforced concrete beams using CFRP sheets.

El-Refaie, S.A., Ashour, Ashraf, Garrity, S.W. 07 1900 (has links)
Yes / This paper reports the testing of 11 reinforced concrete (RC) two-span beams strengthened in flexure with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. The beams were classified into two groups according to the arrangement of the internal steel reinforcement. Each group included one unstrengthened control beam. The main parameters studied were the position, length, and number of CFRP layers. External strengthening using CFRP sheets was found to increase the beam load capacity. All strengthened beams exhibited less ductility compared with the unstrengthened control beams, however, and showed undesirable sudden failure modes. There was an optimum number of CFRP layers beyond which there was no further enhancement in the beam capacity. Extending the CFRP sheet length to cover the entire hogging or sagging zones did not prevent peeling failure of the CFRP sheets, which was the dominant failure mode of beams tested.
6

Shear performance of poplar LVL beams with a hole in bending-shear spans

Wang, A., Zhang, Z., Ashour, Ashraf, Liu, Y., Wang, C. 05 November 2024 (has links)
Yes / To investigate the shear performance of poplar laminated veneer lumber (LVL) beams with holes in bending-shear spans, six specimens were designed and tested by four-point bending tests. Among these, five specimens were provided with a single hole of varying diameter-to-height ratio in the bending-shear span and two of these beams were also reinforced with circumferential carbon fiber reinforced polymer (CFRP) wrap layers. Furthermore, a 3D finite element models for poplar LVL beams with a hole were established, based on the extended finite element method (XFEM) using ABAQUS software. The validated model was utilized to conduct parametric studies on the diameter-to-height ratio, the hole shape, and the vertical eccentricity ratio. A simplified theoretical analysis for predicting the cracking and ultimate loads for LVL beam with a hole was also proposed. The results indicated that beams without a hole failed due to bending, characterized by mid-span tension cracks, whereas beams with a hole exhibited shear failure along the beam's grain direction due to stress concentration around the holes. The maximum normal tensile strain perpendicular to grain around the hole had an angle of 45° or 225° relative to the beam's longitudinal axis, consistent with the crack initiation angle. As the diameter-to-height ratio increased, the cracking and ultimate loads of beams with a hole decreased, indicating more brittle failure characteristics. The circular hole beam showed significant improvements in cracking and ultimate loads compared with the square hole beam with side length equal to the diameter of the circular hole. When the hole center's vertical eccentricity was in the compression zone, an increase in vertical eccentricity led to enhancements in both the cracking load and ultimate loads. Wrapping the beam with CFRP sheet around the hole effectively mitigated crack propagation, enhancing the load-bearing capacity of beams. The simplified formulas provided accurate prediction for the ultimate load, but highly overestimated the cracking and ultimate loads for poplar LVL beams with a hole. The research findings can be provided as a technical support for the design and application of LVL beams with holes. / The full text will be available at the end of the publisher's embargo: 13th Nov 2025
7

Contribution à l'étude du comportement thermomécanique à très haute température des matériaux composites pour la réparation et/ou le renforcement des structures de Génie Civil / Contribution to the study of thermo-mechanical behavior at very high temperature of composite materials for the reparation and/or the reinforcement of civil engineering structures

Nguyen, Thanh Hai 24 November 2015 (has links)
Dans le domaine du renforcement et/ou de la réparation des structures en béton armé par des matériaux composites à l'aide de la méthode du collage extérieur au moyen d'un adhésif époxy, une des préoccupations de la communauté scientifique est l'intégrité structurelle de ce système dans le cas d'incendie dans lequel la haute température est une caractéristique essentielle et peut atteindre jusqu'à 1200°C. Ce travail de recherche est axé sur le comportement thermomécanique à très haute température des matériaux composites [un composite à base de polymère carbone/ époxy (Carbon Fiber Reinforced Polymer- CFRP), un composite textile/ mortier cimentaire (Textile Reinforced Concrete- TRC) et un adhésif à base d'époxy]. L'évolution des propriétés mécaniques et d'autres aspects mécaniques de ces matériaux composites avec la température a été caractérisée. Une nouvelle procédure expérimentale concernant la mesure de la déformation de l'éprouvette à l'aide du capteur laser est développée et validée. Une étude numérique et expérimentale a été réalisée dans le but de déterminer principalement la température à la rupture des joints « composite/ adhésif/ composite » sous les sollicitations mécaniques et thermiques. L'efficacité de la protection thermique de deux isolants [PROMASPRAY®T (produit commercial de la société PROMAT] et Isolant A (produit développé par le LGCIE site Tusset) a aussi été étudiée dans cette thèse. Enfin, une approche numérique, à l'aide du logiciel ANSYS, est utilisée afin de déterminer, de façon préliminaire et approximative, à l'échelle matériau, les propriétés thermiques des matériaux (composite textile/ mortier cimentaire -TRC et Isolant A) / In the area of the strengthening and/or the reparation of reinforced concrete structures with composites by means of the external bonding method using an epoxy adhesive, one of the preoccupation of the scientific community is the structural integrity of this system in the event of fire in which the high temperature is the essential feature et can reach up to 1200°C. This research focuses on the thermo-mechanical behavior of composite materials [carbon/epoxy adhesive composite (or carbon fiber reinforced polymer (CFRP), textile/cementitious mortar composite (or textile reinforced concrete (TRC)] and an epoxy-based adhesive. The evolution of mechanical properties and other mechanical aspects of these materials with the temperature has been characterized. A new experimental procedure concerning the measurement of sample strain by the laser sensor is developed and validated. An experimental and numerical study has been realized in order to mainly determine the temperature at the failure of "composite/adhesive/composite" joints under thermal and mechanical loadings. The effectiveness of the thermal protection of two insulators [PROMASPRAY®T (a commercial product of the PROMAT company and the insulator A (product developed by the LGCIE site Tuset)] has also been investigated in this PhD thesis. Finally, a numerical approach, using ANSYS software, is used to determine, in the preliminary and approximate way, at material scale, thermal properties of the materials [the textile reinforced concrete (TRC) and the insulator A]
8

Oblique angle pulse-echo ultrasound characterization of barely visible impact damage in polymer matrix composites

Welter, John T. January 2019 (has links)
No description available.

Page generated in 0.1084 seconds