• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon dioxide sequestration methodothologies - A review

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 30 November 2023 (has links)
Yes / The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO2 emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO2 on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO2 storage. This stage involves primarily the adsorption of CO2 in the ocean and the injection of CO2 into subsurface reservoir formations. Additionally, the process of CO2 reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO2 into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO2 injection and storage systems, with a specific focus on CO2 storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO2 thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance.
2

A comprehensive review on carbon dioxide sequestration methods

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 09 December 2023 (has links)
Yes / Capturing and storing CO2 (CCS) was once regarded as a significant, urgent, and necessary option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the environment. This recognition came about as a result of extensive research conducted in the past. The CCS cycle comes to a close with the last phase of CO2 storage, which is accomplished primarily by the adsorption of CO2 in the ocean and injection of CO2 subsurface reservoir formation, in addition to the formation of limestone via the process of CO2 reactivity with reservoir formation minerals through injectivities. CCS is the last stage in the carbon capture and storage (CCS) cycle and is accomplished chiefly via oceanic and subterranean geological sequestration, as well as mineral carbonation. The injection of supercritical CO2 into geological formations disrupts the sub-surface’s existing physical and chemical conditions; changes can occur in the pore fluid pressure, temperature state, chemical reactivity, and stress distribution of the reservoir rock. This paper aims at advancing our current knowledge in CO2 injection and storage systems, particularly CO2 storage methods and the challenges encountered during the implementation of each method and analyses on how key uncertainties in CCS can be reduced. CCS sites are essentially unified systems; yet, given the scientific context, these storage systems are typically split during scientific investigations based on the physics and spatial scales involved. Separating the physics by using the chosen system as a boundary condition is a strategy that works effectively for a wide variety of physical applications. Unfortunately, the separation technique does not accurately capture the behaviour of the larger important system in the case of water and gas flow in porous media. This is due to the complexity of geological subsurface systems, which prevents the approach from being able to effectively capture the behaviour of the larger relevant system. This consequently gives rise to different CCS technology with different applications, costs and social and environmental impacts. The findings of this study can help improve the ability to select a suitable CCS application method and can further improve the efficiency of greenhouse gas emissions and their environmental impact, promoting the process sustainability and helping to tackle some of the most important issues that human being is currently accounting global climate change. Though this technology has already had large-scale development for the last decade, some issues and uncertainties are identified. Special attention was focused on the basic findings achieved in CO2 storage operational projects to date. The study has demonstrated that though a number of CCS technologies have been researched and implemented to date, choosing a suitable and acceptable CCS technology is still daunting in terms of its technological application, cost effectiveness and socio-environmental acceptance.

Page generated in 0.0548 seconds