• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Palladium Catalyzed Refunctionalizations of Olefins : Novel Strategies for Construction of C-C, C-Hetero Bonds and Homogeneous Hydrogenation

Ojha, Devi Prasan January 2015 (has links) (PDF)
Chapter 1: Metal carbenoids in organic synthesis The chapter describes the phenomena of metal carbenoid insertion reactions in two parts: Part A, and Part B. The study of N-tosylhydrazones as diazo precursor was commenced by Jose Barluenga in 2007,1 which demonstrated an in-situ generation of diazo species and trapping of that with low valent palladium catalyst (Scheme 1). Later, this palladium-carbenoid assumption was supported by few reports. Some of these discoveries were by D. F. Taber in 1986 followed by van Vranken in 1999 & 2001.2 These studies of palladium carbenes were supplemented by several groups in subsequent years. The consequent developments with N-tosylhydrazones as diazo source were very fruitful and produced exceptional chemical transformations in recent years. Though the precursor is also vastly customary for other metals such as Cu, Ni, Rh and Co, the primary focus has been given to Pd catalysis due to its wide utility and applicability. 1) Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 5587. 2) (a) Taber, D. F.; Amedio, J. C., Jr.; Sherrill, R. G. J. Org. Chem. 1986, 51, 3382. (b) Hoye, T. R.; Dinsmore, C. J.; Johnson, D. S.; Korkowski, P. F. J. Org. Chem. 1990, 55, 4518. (c) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L Tetrahedron 2001, 57, 5219. 3) Palladium catalysed coupling of tosylhydrazones with aryl and heteroaryl halides in the absence of external ligands: synthesis of substituted olefins, Ojha, D. P.; Prabhu, K. R. J. Org. Chem., 2013, 78, 12136. Modes of reactivity of a metal-carbene Scheme 1 Cascade carbene migratory insertion process Part A: Ligand-free coupling of tosylhydrazones with aryl & heteroaryl halides In this part, Palladium catalysed cross-coupling reaction of hydrazones with aryl halides in absence of an external ligand is reported. The versatility of this coupling reaction has been demonstrated by showcasing the selectivity of coupling reaction in presence of hydroxyl and amine functional groups. This method allows synthesizing a variety of heterocyclic compounds, which are otherwise difficult to access from traditional methods. Application of the present methodology is validated in tandem reaction of ketones to the corresponding substituted olefins in a single pot experiment. Few examples are illustrated below in Scheme 2.3 Scheme 2: Scope of aryl halide coupling with tosylhydrazones Part B: Pd-catalysed Synthesis of Highly Branched Dienes The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with α-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd catalyzed selective coupling reaction of hydrazones in presence of tert-BuOLi and benzoquinone oxidant to form corresponding branched dienes (Scheme 3).4 The utility of the Pd catalyst for cross-coupling reactions for synthesizing branched conjugated dienes are rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds. 4) Pd-catalyzed cross-coupling reactions of hydrazones: regioselective synthesis of highly branched dienes, Ojha, D. P.; Prabhu, K. R. J. Org. Chem., 2012, 77, 11027. 5) Furrow, M. E.; Myers, A. G. J. Am. Chem. Soc. 2004, 126, 5436. 6) Taber, D. F.; Guo, P.; Guo, N. J. Am. Chem. Soc. 2010, 132, 11179. Scheme 3: diene synthesis via bis-carbene insertion process Chapter 2: Tosylhydrazones: Role in modern day organic synthesis In recent days, hydrazone based reactions are focused on the donor-acceptor ability of the hydrazones or the in-situ generated diazo species (Scheme 4). This commenced with the Myers’s report in 2004,5 which simplifies the Barton vinyl halide preparation with a remarkable revision on synthesis of alkyl-silyl-hydrazones and its applications. Improved methods of using tosylhydrazones were demonstrated by Aggarwal in successive years. Cycloadditions were implemented by Douglass F. Taber. 6 This study was enriched in a quite fascinating way by several groups such as Jose Barluenga, with many reductive coupling reactions and 1, 3-dipolar reactions. Thomson, in a very interesting report shows the traceless petasis reaction with hydrazones and also worked in many other prospects such as three component reactions and the acid catalysed [3+3] sigmatropic reactions of hydrazones. 7 Wang has also impressed with very attractive transformations in the past decade. 8 7) Thomson, R. J. et al. Nat. Chem. 2009, 1, 494. 8) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2012, 46, 236. 9) Regioselective Synthesis of vinyl halides, vinyl sulfones, and alkynes: A tandem intermolecular nucleophilic and electrophilic vinylation of tosylhydrazones, Ojha, D. P.; Prabhu, K. R. Org. Lett. 2015, 17, 18. Scheme 4: Trapping diazo species in intermolecular fashion Part A: Synthesis of vinyl halides Trapping diazo species in an intermolecular fashion by attack of two independent ions (a cation followed by an anion) in tandem at the carbene center is unprecedented. As part of our efforts on the utility of tosylhydrazones, herein we report a novel approach of using ambiphilic diazo species to perform a tandem attack of a nucleophile followed by an electrophile in an intermolecular fashion for synthesizing various types of vinyl halides. A few representative examples are shown in Scheme 5.9 Scheme5: Synthesis if vinyl halides Part B: Synthesis of vinyl sulfones Vinyl sulfones are potential synthetic targets due to their presence in biologically and pharmaceutically important molecules ranging from small natural metabolites to proteins, and have found widespread applications in biological research as covalent protease inhibitors. Vinyl sulfones represent one of the important sulfur containing functional groups in organic chemistry, which are generally synthesized through elimination reactions, oxidation of vinyl sulfides or witting reactions using multistep sequence. Following this technique, we were able to synthesize a variety of vinyl sulfones with rich mechanistic features in a single step. A few such examples are documented in Scheme 6.9 Scheme 6: synthesis of vinyl sulfones Part C: Synthesis of alkynes The functional group conversion to achieve alkyne frameworks are generally a difficult transformation. There are very few limited and tedious processes are available in literature, mainly containing multi-step procedures. Additionally these reactions are require harsh conditions. Considering all these factors, there is a need for developing methods to synthesize alkynes from common functional groups under mild reactions conditions. In a similar way, to introduce different halogens at the same carbon, we expected the eliminations of the leaving groups in tandem formed alkynes. After extensive screening studies, it was pleasing to find that the reaction of tosylhydrazones with NCS−BTEAC, NBS−TBAB, or NIS−TBAI combination in presence of K2CO3 in dioxane as solvent at 110 °C can furnish corresponding acetylene derivatives in good yields. Few examples are shown in Scheme 7.9 Scheme 7: Trapping diazo species in intermolecular fashion Chapter 3: Pd catalysed hydroboration This chapter shows a hydroboration study of terminal alkynes in a highly regioselective manner (Scheme 8). Organoboron derivatives have become essential intermediates in organic and medicinal chemistry. Pioneering contributions are made by Brown and Akira Suzuki, who both instigated the development of new synthetic tools for the introduction of boron atoms onto organic molecules. 10 10) (a) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J.-J.; Arseniyadis, S.; Smietana, M. Tetrahedron 2014, 70, 8431. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. 11) Pd-Catalysed regioselective borylation of alkynes: A ligand controlled synthesis of α- and β vinyl boronates (manuscript submitted). Scheme 8: possibility of site selectivity in hydroboration Part A: Pd-catalysed regioselective borylation of alkynes: A ligand controlled synthesis of α and β – vinyl boronates The metal catalyzed borylations of alkynes proceeds in a two-step process. Initially M-Bpin species undergo an addition onto the alkynes to generate organometallic species followed by quenching of the organometallic species with electrophiles. The addition M-Bpin species is regioselective governed by the steric and electronics factors of both metal complex as well as alkyne substituents. In this direction, a palladium catalysed α-selective borylation was achieved for terminal alkynes. A broad range of substrates were successfully borylated under optimized reaction conditions with very high selectivity. Interestingly, the selectivity was reversed to terminal site by using a NHC ligand. A few examples are shown in Scheme 9.11 Scheme 9: α & β-vinyl boronates Chapter 4: Pd/borane unit: Behavior towards isomerization vs reduction of alkenes This study presents a unique behaviour of palladium-boronate unit responsible for olefin chain walking and olefin reduction reactions (Scheme 10). The catalytic system stands efficient against both functionalized and unfunctionalized olefin isomerization as well as reductions. This study has been presented in two parts. Scheme 10: isomerization vs reduction Part A: Pd/ boronates or borane unit as efficient catalytic systems for olefin chain walk This study presents the behaviour of palladium-boronate unit responsible for olefin chain walking. The catalytic system is efficient for both functionalized and unfunctionalized olefin isomerizations (Scheme 11). Cycloisomerization of transient conjugated alkenes to synthesize heterocycles are prominent applications of this technique. The system describes a concept of olefin activation by coordination with Pd-borane complex, this complex assists in a facile [1,3]-hydride shift. This technique allows us to facilitate an isomerization in functionalized as well as unfunctionalized olefinic systems. Considering the substrates scope, the catalytic cycle tolerates various sensitive functional groups and shows good selectivity. In the following Scheme 11 few examples are depicted.12 12) Palladium/boron catalytic unit for olefin chain-walk (manuscript under preparation). Scheme 11: chain-walking of olefins. Part B: Palladium catalysed boronate promoted alkene reduction in water In this work, water has been employed as a source of hydrogen. The reduction of alkenes was achieved using Pd catalyst in presence of bis(pinacolato)diboron and H2O. In this aspect, the utility of water as hydrogen equivalent is the pertinent as well as beneficial with many advantages. Few representative examples are shown in Scheme 12.13 13) Pd-Catalysed homogeneous hydrogenation of olefins by using water as hydrogen source (manuscript under preparation). Scheme 12: synthesis of alkenes reduced products.
2

Copper-Catalyzed Novel Oxidative Transformations : Construction of Carbon-Hetero Bonds

Rokade, Balaji Vasantrao January 2014 (has links) (PDF)
The thesis entitled “Copper-Catalyzed Novel Oxidative Transformations: Construction of Carbon-Hetero Bonds” is divided into two main sections. Section A deals with the utility of azide as a nitrogen source for C-N bond formation, which is further divided into 4 chapters, and section B presents decarboxylative radical coupling reaction for C-heteroatom bond formation which is further divided in to two chapters. Section A Chapter 1 describes an approach for the direct synthesis of nitrile from the corresponding alcohols using azide as a nitrogen source. Nitrile functionality is a versatile and ubiquitous which occurs in a variety of natural products. Nitrile functionality can be easily transformed into a variety of functional groups and products such as aldehydes, ketones, acids, amines, amides and nitrogen-containing heterocycles, such as tetrazoles and oxazoles. In this chapter a successful attempt for developing a novel methodology to oxidize benzylic and cinnamyl alcohols to their corresponding nitriles in excellent yields has been described. This strategy uses DDQ as an oxidant and TMSN3 as a source of nitrogen in the presence of a catalytic amount of Cu(ClO4)2·6H2O. A few representative examples are highlighted in Scheme 1.1 Scheme 1. Oxidative conversion of alcohols to nitriles Second chapter represents a protocol for the synthesis of 1,5-disubstituted tetrazoles from the corresponding secondary alcohols. Among heterocyles, tetrazole and its derivatives are important class of nitrogen containing molecules. Due to their well-known biological activities as well as vast applications in pharmaceuticals and material science, they are potential targets for synthetic organic chemists. Therefore, a simple and user-friendly method for the synthesis of tetrazole is desirable. In this chapter, a mild and convenient method to synthesize 1,5-disubstituted tetrazoles using easily accessible secondary alcohols by employing TMSN3 as a nitrogen source is developed. This reaction is performed in the presence of a catalytic amount of Cu(ClO4)2·6H2O using DDQ as an oxidant under ambient conditions (Scheme 2).2 Scheme 2. Oxidative conversion of secondary alcohols to tetrazoles Third chapter presents a method for synthesizing amides from their corresponding secondary alcohols. Amide functionality is a crucial backbone in peptide chemistry, it also serve as an important precursor or intermediate for variety of organic transformations. In this contention, a mild and convenient method to synthesize amides using easily accessible secondary alcohols by employing TMSN3 as a nitrogen source is developed. This reaction is performed in the presence of a catalytic amount of Cu(ClO4)2·6H2O using DDQ as an oxidant under ambient conditions (Scheme 3).3 Scheme 3. Oxidative conversion of secondary alcohols to amides Additionally, the application of this methodology has also been revealed for the synthesis azides directly from their alcohols. Some of the representative examples are shown in the Scheme 4.3 Scheme 4. Direct conversion of alcohols to their azides. Fourth chapter describes highly chemoselective Schmidt reaction. The classical Schmidt reaction involves the formation of new carbon-nitrogen bonds in a reaction of a carbon-centred electrophile with hydrazoic acid followed by loss of nitrogen, which usually occurs via a rearrangement. It is well known that under the Schmidt reaction conditions, ketones and carboxylic acids are converted into their corresponding amides and amines respectively, whereas aldehydes furnish a mixture of formanilides and nitriles. In this chapter, Schmidt reaction of aldehydes to obtain their nitriles without formation of the corresponding formanilide is presented (Scheme 5).4 It was also observed that aromatic ketones and acids functionalities were intact under the reaction condition, unlike the conventional Schmidt reaction. Scheme 5. Highly chemoselective Schmidt reaction Section B It is divided into two chapters, describes a copper catalyzed decarboxylative radical coupling for the synthesis of vinyl sulfones and nitroolefins (Scheme 6). Scheme 6. General strategy for the second part First chapter narrates a strategy for synthesizing nitroolefins from the α,β-unsaturated carboxylic acids. Nitroolefins represent a unique class of nitro compounds, which have multifaceted utility in organic synthesis. They possess antibacterial, rodent-repelling, and antitumor activities. They serve as important intermediates in organic synthesis. Nitroolefins also react with a variety of nucleophiles, and their electron-deficient character renders them as a powerful dienophiles in Diels-Alder reactions. In our attempt to use the decarboxylative strategy, this chapter describes a method for the nitrodecarboxylation of substituted cinnamic acid derivatives to their corresponding nitroolefins. This nitrodecarboxylation reaction is performed using catalytic amount of CuCl in the presence of air using TBN as a nitrating source (Scheme 7).5 Besides, the reaction provides a useful method for the synthesis of β,β-disubstituted nitroolefin derivatives which are generally difficult to access from other conventional methods. Scheme 7. Decarboxylative nitration Second chapter presents a new protocol for the synthesis of vinyl sulfones from the α,β-unsaturated carboxylic acid. Vinyl sulfones are versatile building blocks, which find their utility as Michael acceptors and used in cycloaddition reactions. This functional group has also been shown to potently inhibit a variety of enzymatic processes, and thus provides unique properties for drug design and medicinal chemistry. Vinyl sulfones are prominent in medicinal chemistry owing to their wide presence in pharmaceutically active molecules, such as enzyme inhibitors and biological activity. In this chapter, we report a method for the construction of C-S bonds via ligand promoted decarboxylative radical sulfonylation of ,-unsaturated carboxylic acids to synthesize vinyl sulfones using Cu catalysis (Scheme 8).6 This is the first report for this particular conversion. Scheme 8. Decarboxylative sulfonation

Page generated in 0.0717 seconds