• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of damage on the petrophysical properties of carbonate-hosted fault zones

Michie, Emma A. H. January 2015 (has links)
Carbonate reservoirs contain approximately two-thirds of the world's oil and gas reserves (Al-Anzi et al., 2003). Carbonates often pose a significant problem when it comes to understanding their reservoir quality because of their heterogeneous nature, which is caused by both the variety of processes occurring depositionally and their high susceptibility to diagenetic alterations. In order to fully characterise the behaviour of carbonate rocks in the subsurface is it important to understand their textural heterogeneity and also how faulting can modify their textures. Deformation in fault zones causes the petrophysical properties (e.g. porosity, permeability and velocity) to alter from the background values. For example, fracturing in damage zones surrounding faults increase the permeability, creating conduits to fluids, conversely, fault cores often act as barriers, created by pore occluding processes. However, faulting in carbonate rocks is often complicated by their textural variations, leading to a variety of deformation microstructures, and each will create different petrophysical properties. This thesis aims to understand how faulting effects different carbonate rocks and analyse the controls on any alterations to the petrophysical properties (porosity, permeability and velocity) into the fault zones. Alterations to the permeability are important to unravel in order to assess the fluid flow potential and hydraulic properties of a rock. Understanding the alterations to the velocity can help to better image faults at depth and to provide information on their microstructures.

Page generated in 0.0739 seconds