• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 82
  • 30
  • 25
  • 20
  • 20
  • 20
  • 19
  • 17
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multicomponent Reactions in 11C/12C Chemistry : – Targeting the Angiotensin II Subtype 2 Receptor

Stevens, Marc January 2016 (has links)
Section 1 of this thesis contains an introduction to method development in organic synthesis, multicomponent reactions, sulfonyl azides, tracer development in 11C chemistry and the biological target. Section 2 describes the use of sulfonyl azides in carbonylative chemistry. Paper I covers development of a diazotransfer protocol. In total, 30 arylsulfonyl azides were synthesised from primary sulfonamides (20–90% yield). 15N mechanistic studies were carried out and in Paper II, the products were converted into sulfonamides, sulfonylureas and sulfonyl carbamates (19–90% yield). For ureas and carbamates, a two-chamber protocol was employed to release CO from Mo(CO)6. 15N mechanistic studies showed that the sulfonamides were formed by direct displacement of azide. Section 3 covers imaging and biological studies of the angiotensin II receptor subtype 2 (AT2R). In Paper III, 12 11C-sulfonyl carbamates were prepared in isolated radiochemical yields of 3–51% via Rh(I)-mediated carbonylation. The first non-peptide AT2R agonist, C21, was labelled (isolated RCY 24±10%, SA 34–51 GBq/µmol). C21 was tested in a prostate cancer assay, followed by biodistribution and small-animal PET studies. In Paper IV, a 11C-labelled AT2R ligand prepared via Pd(0)-mediated aminocarbonylation was used for autoradiography, biodistribution and small-animal PET studies.   Section 4 describes the development of a multicomponent method for the synthesis of 3,4-dihydroquinazolinones (Paper V). 31 3,4-dihydroquinazolinones were synthesized via a cyclic iminium ion.
32

New strategies for the synthesis and functionalization of aliphatic amines

Trowbridge, Aaron Daniel January 2019 (has links)
The invention of catalytic processes that convert feedstock chemicals into pharmacologically-privileged amines is a landmark challenge in organic synthesis. This thesis describes the development of three novel transition-metal catalyzed processes for the synthesis of alkylamines that attempts to meet this challenge. The first Pd-catalyzed methylene β-C−H carbonylation of alkylamines to form substituted β-lactams is reported. Through the synergistic use of a Pd-catalyst and Xanpthos ligand, secondary amines underwent exclusive methylene β-C−H activation in high yields and diastereoselectivities. Subsequently, the development of a remarkably selective methylene β-C−H carbonylation of α-tertiary amines (ATAs), is detailed. This methodology enables the C−H carbonylation of methylene C−H bonds over traditionally more reactive methyl and C(sp2)−H bonds. Importantly, a range of functional groups previously incompatible with C−H technologies were tolerated in good yields. Finally, the development of a novel multicomponent synthesis of tertiary amines is described. The novel photocatalytic single-electron reduction of alkyl iminium ions furnishes -amino radicals that engage alkenes forming a new C-C bond. The reaction exhibits broad functional group tolerance and enables the synthesis of amines not readily accessible by existing methods.
33

[<sup>11</sup>C]Carbon Monoxide and Aryl Triflates in Palladium-Mediated Carbonylation Reactions : Synthetic approaches to [<sup>11</sup>C]Carbonyl Compounds and [<sup>11</sup>C]Amines

Rahman, Obaidur January 2004 (has links)
<p>The usefulness of low concentrations (typically 10 to 100 <i>µ</i>M) of [<sup>11</sup>C]carbon monoxide and aryl triflates as substrates in <sup>11</sup>C-carbonylation using different nucleophiles in the presence of lithium bromide was investigated. The reactions were performed in a micro autoclave of 200 <i>µ</i>L volume and catalysed (mediated) by palladium(0). </p><p>A peripheral type benzodiazepine receptor (PBR) ligand, 1-(2-chlorophenyl)-<i>N</i>-methyl-<i>N</i>-(1-methylpropyl)isoquinoline-3-carboxamide (PK11195) and its structural analogues including an irreversible ligand for PBR, some other amides, ketones and carboxylic acids, were all labelled with <sup>11</sup>C using this approach. The [<i>carbonyl</i>-<sup>11</sup>C]PK11195, analogues and other amides were prepared from aryl triflates and amines, and the [<i>carbonyl</i>-<sup>11</sup>C]ketones were prepared from aryl triflates and organoboranes. In the synthesis of [<i>carboxyl</i>-<sup>11</sup>C]carboxylic acids, water was utilised as nucleophile. The decay-corrected radiochemical yields were 10 to 55% for [<sup>11</sup>C]PK11195 and analogues, 2 to 63% for other [<sup>11</sup>C]amides, 10 to 75% for [<sup>11</sup>C]ketones and 25 to 65% for [<sup>11</sup>C]carboxylic acids. The specific radioactivity of the labelled compounds was in the range of 150 to 900 GBq/<i>µ</i>mol. </p><p>Some [<sup>11</sup>C]amines were prepared by a reductive amination of the corresponding<sup> </sup> [carbonyl-<sup>11</sup>C]ketones. These reactions were performed using different amines in the presence of TiCl<sub>4</sub> and NaBH<sub>3</sub>CN. The radiochemical yields of the [<sup>11</sup>C]amines varied from 2 to 78% (determined by analytical HPLC). </p><p>In order to confirm the labelling position, synthesis of selected <sup>13</sup>C-substituted compounds were performed. For each substance group/ synthesis method, a selected compound was synthesised using (<sup>13</sup>C)carbon monoxide and the <sup>13</sup>C-substituted compound was then analysed by <sup>13</sup>C NMR.</p><p>A synthetic route was developed for the preparation of 1-(2-chloro-phenyl)-isoquinolin-3-yl trifluoromethanesulfonate used as the precursor in the synthesis of [<i>carbonyl</i>-<sup>11</sup>C]PK11195 and analogues.</p>
34

Palladium-Catalyzed Carbonylation and Arylation Reactions

Sävmarker, Jonas January 2012 (has links)
Palladium-catalyzed reactions have found widespread use in contemporary organic chemistry due to their impressive range of functional group tolerance and high chemo- and regioselectivity. The pioneering contributions to the development of the Pd-catalyzed C-C bond forming cross-coupling reaction were rewarded with the Nobel Prize in Chemistry in 2010. Today, this is a rapidly growing field, and the development of novel methods, as well as the theoretical understanding of the various processes involved are of immense importance for continued progress in this field. The aim of the work presented in this thesis was to develop novel palladium(0)- and palladium(II)-catalyzed reactions. The work involved in achieving this aim led to the development of a Mo(CO)6-mediated carbonylative Stille cross coupling reaction for the preparation of various deoxybenzoins. The protocol utilized convenient gas-free conditions to facilitate the carbonylative coupling of benzyl bromides and chlorides with aryl and heteroaryl stannanes. Mo(CO)6-assisted conditions were then used in the development of a general protocol suitable for the aminocarbonylation of aryl triflates. Both electron-poor and electron-rich triflates were coupled with primary, secondary and aryl amines. In addition, DMAP was found to be a beneficial additive when using sterically hindered or poorly nucleophilic amines. An efficient and convenient method for the synthesis of styrenes from arylboranes was developed, employing the relatively inexpensive vinyl acetate as the ethene source under Pd(II)-catalyzed conditions. The reaction mechanism was studied using ESI-MS, and a plausible catalytic cycle was proposed. A method for the oxidative Heck reaction employing aryltrifluoroborates and aryl MIDA boronates was also developed. Electron-rich and electron-poor olefins were regioselectively arylated under microwave-assisted conditions. Various arylboron species were identified in an ongoing reaction using ESI-MS.    Further investigations led to the development of a direct method for the synthesis of arylamidines from aryltrifluoroborates and cyanamides. Under Pd(II)-catalyzed conditions it was possible to insert the aryl into primary, secondary and tertiary cyanamides. Finally, a desulfitative method for the synthesis of aryl ketones was developed. A variety of aryl sulfinates were effectively inserted into alkyl- and aryl nitriles. The mechanism was further investigated using ESI-MS and a plausible catalytic cycle was proposed.
35

[11C]Carbon Monoxide and Aryl Triflates in Palladium-Mediated Carbonylation Reactions : Synthetic approaches to [11C]Carbonyl Compounds and [11C]Amines

Rahman, Obaidur January 2004 (has links)
The usefulness of low concentrations (typically 10 to 100 µM) of [11C]carbon monoxide and aryl triflates as substrates in 11C-carbonylation using different nucleophiles in the presence of lithium bromide was investigated. The reactions were performed in a micro autoclave of 200 µL volume and catalysed (mediated) by palladium(0). A peripheral type benzodiazepine receptor (PBR) ligand, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)isoquinoline-3-carboxamide (PK11195) and its structural analogues including an irreversible ligand for PBR, some other amides, ketones and carboxylic acids, were all labelled with 11C using this approach. The [carbonyl-11C]PK11195, analogues and other amides were prepared from aryl triflates and amines, and the [carbonyl-11C]ketones were prepared from aryl triflates and organoboranes. In the synthesis of [carboxyl-11C]carboxylic acids, water was utilised as nucleophile. The decay-corrected radiochemical yields were 10 to 55% for [11C]PK11195 and analogues, 2 to 63% for other [11C]amides, 10 to 75% for [11C]ketones and 25 to 65% for [11C]carboxylic acids. The specific radioactivity of the labelled compounds was in the range of 150 to 900 GBq/µmol. Some [11C]amines were prepared by a reductive amination of the corresponding [carbonyl-11C]ketones. These reactions were performed using different amines in the presence of TiCl4 and NaBH3CN. The radiochemical yields of the [11C]amines varied from 2 to 78% (determined by analytical HPLC). In order to confirm the labelling position, synthesis of selected 13C-substituted compounds were performed. For each substance group/ synthesis method, a selected compound was synthesised using (13C)carbon monoxide and the 13C-substituted compound was then analysed by 13C NMR. A synthetic route was developed for the preparation of 1-(2-chloro-phenyl)-isoquinolin-3-yl trifluoromethanesulfonate used as the precursor in the synthesis of [carbonyl-11C]PK11195 and analogues.
36

Séquences pseudo-domino carbonylation / allylation décarboxylante catalysées au palladium

Giboulot, Steven 24 September 2012 (has links) (PDF)
Le travail décrit dans ce manuscrit est consacré au développement de nouvelles séquences domino catalysées par le palladium impliquant une carbonylation suivie d'une allylation décarboxylante. Dans un premier temps, la séquence pseudo-domino type I carbonylation / allylation décarboxylante a été optimisé sur des α-chlorocétones. La séquence domino a permis d'obtenir des cétones mono-allylées avec de bons rendements, et ce en une seule étape synthétique. Dans un deuxième temps, nous avons optimisé une seconde séquence pseudo domino type I impliquant cette fois ci la N-allylation / carbopalladation / carbonylation d'anilines. Cette séquence a permis de synthétiser des dérivés indolines et indoles hautement fonctionnalisé à partir de substrats simples et toujours en une seule étape synthétique. Des essais afin d'étendre cette séquence domino à une séquence pseudo-domino quadruple ont été envisagés, en remplaçant le méthanol utilisé par de l'alcool allylique. Ceci permettrait de réunir les deux séquences optimisées et rajouterait l'allylation décarboxylante au processus domino triple
37

Synthèse directe de cétones arylpyridiniques par couplage carbonylant d'halogénopyridines catalysé par des systèmes palladium-carbène N-hétérocycliques et réduction asymétrique des cétones

Maerten, Eddy Castanet, Yves. January 2007 (has links)
Reproduction de : Thèse de doctorat : Chimie organique et macromoléculaire : Lille 1 : 2005. / N° d'ordre (Lille 1) : 3769. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 195-203. Notes bibliogr.
38

Hepatocyte Cytotoxicity Induced by Hydroperoxide (Oxidative Stress Model) or Dicarbonyls (Carbonylation Model): Prevention by Bioactive Nut Extracts or Catechins

Banach, Monica Sofia 16 December 2009 (has links)
Carbonyl and oxidative stress augment the development of diabetic complications. We evaluated the cytoprotectiveness of walnut and hazelnut extracts and catechins for decreasing cytotoxicity, lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation in cell death models of carbonyl and oxidative stress. Polar extracts (methanol or water) showed better cytoprotection than the non-polar (ethyl acetate) nut extracts against hydroperoxide-induced hepatocyte cell death and oxidative stress markers. Catechin flavonoids found in plants, including walnuts and hazelnuts, prevented serum albumin carbonylation in a carbonyl stress model (using glyoxal or methylglyoxal). Hepatocyte protein carbonylation and cell death were prevented and UV spectra data suggested a catechin:methylglyoxal adduct was formed. We conclude that (a) bioactive nut constituents in polar extracts were more protective than non-polar extracts against oxidative stress, and (b) catechins were effective under physiological temperature and pH, at preventing dicarbonyl induced cytotoxicity likely by trapping dicarbonyls or reversing early stage carbonylation.
39

Hepatocyte Cytotoxicity Induced by Hydroperoxide (Oxidative Stress Model) or Dicarbonyls (Carbonylation Model): Prevention by Bioactive Nut Extracts or Catechins

Banach, Monica Sofia 16 December 2009 (has links)
Carbonyl and oxidative stress augment the development of diabetic complications. We evaluated the cytoprotectiveness of walnut and hazelnut extracts and catechins for decreasing cytotoxicity, lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation in cell death models of carbonyl and oxidative stress. Polar extracts (methanol or water) showed better cytoprotection than the non-polar (ethyl acetate) nut extracts against hydroperoxide-induced hepatocyte cell death and oxidative stress markers. Catechin flavonoids found in plants, including walnuts and hazelnuts, prevented serum albumin carbonylation in a carbonyl stress model (using glyoxal or methylglyoxal). Hepatocyte protein carbonylation and cell death were prevented and UV spectra data suggested a catechin:methylglyoxal adduct was formed. We conclude that (a) bioactive nut constituents in polar extracts were more protective than non-polar extracts against oxidative stress, and (b) catechins were effective under physiological temperature and pH, at preventing dicarbonyl induced cytotoxicity likely by trapping dicarbonyls or reversing early stage carbonylation.
40

Antioxidant Enzyme Activities In Rat Liver Tissues Of Diabetic Rats

Sadi, Gokhan 01 September 2004 (has links) (PDF)
Free radicals are the compounds having one or more unpaired electrons in their outer orbital and this unpaired electron make these compounds very reactive. Especially as their concentration increases, they initiate a chain oxidation reaction of lipids, proteins and nucleic acids. The condition, in which the production of free radicals exceeds their elimination or tissue defense mechanism decrease against them or both occur together, is called oxidative stress. In diabetes mellitus which is a glucose metabolism disorder, there occurs excessive non-enzymatic protein oxidation, glucose autoxidation and enhanced activity of polyol pathway enzymes, which are the possible sources of the oxidative stress in this disease. In this study, the conditions of the activity measurements of major antioxidant enzymes, namely superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione peroxidase (GPx, 1.11.1.9) and glutathione S-transferase (GST, EC 2.5.1.18) were studied and the optimum conditions (pH, temperature and substrate concentrations) for each assay were determined. Further objectives of the study were to characterize the enzymatic antioxidant systems (catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferase), tissue oxidation status (concentrations of TBARS, protein carbonylation, and lipid/protein ratios) and nonenzymatic antioxidant (reduced glutathione) levels of the diabetic rat liver tissues. According to our results, the hepatic SOD and GPx activities significantly increased whereas CAT activity markedly decreased in diabetic rats compared to control group. Also, GST activities did not change in diabetes. As a result of oxidative stress, TBARS concentration, lipid/protein ratios and protein carbonylation increased and GSH levels decreased in diabetic rats compared to control rats. This increase in tissue damage, in spite of the increase in antioxidant enzyme activities, could have been due to the overproduction of reactive oxygen species that exceeded the capacity of the antioxidant enzymes during the eight week of diabetes.

Page generated in 0.1014 seconds