• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carboxypeptidase Y : purification, immobilization and applications in protein sequencing and peptide synthesis /

Hsiao, Humg-Yu January 1979 (has links)
No description available.
2

Engineering Saccharomyces ceresisiae for the Secretion of an Extracellular Lipase

Stewart, Gaynelle 08 August 2007 (has links)
Developing microbial systems capable of converting low cost lipids into value added products depends on the ability to acquire substrates from the growth media. Saccharomyces cerevisiae can acquire free fatty acids from the growth media and a portion of these lipids can be converted into new lipid products. However, they cannot acquire complex lipids from the growth media unless a nonspecific lipase is included. To circumvent lipase addition, we are genetically engineering S. cerevisiae to secrete a lipase into the growth media. We selected the LIP2 gene from Yarrowia lipolytica, which encodes a nonspecific lipase. Several modifications were made to the LIP2 gene to improve processing. Results identified strains secreting the most lipase. From these results, high producing strains were inserted into an oil inducible vector. Halo assays confirmed lipase secretion, while measuring the fatty acid composition confirmed triacylglycerol breakdown, and yeast uptake of the free fatty acids released.
3

Enzyme selectivity as a tool in analytical chemistry

Hamberg, Anders January 2007 (has links)
<p>Enzymes are useful tools as specific analytical reagents. Two different analysis methods were developed for use in the separate fields of protein science and organic synthesis. Both methods rely on the substrate specificity of enzymes. Enzyme catalysis and substrate specificity is described and put in context with each of the two developed methods.</p><p>In <strong>paper I </strong>a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage.</p><p>In paper<strong> II </strong>and <strong>III</strong>, three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase,<em> Candida antarctica</em> lipase<strong> </strong>B<strong> </strong>and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD<sup>+</sup>. The conversion and enantiomeric excess of the sample could be calculated from the relative differences in absorbance.</p>
4

Enzyme selectivity as a tool in analytical chemistry

Hamberg, Anders January 2007 (has links)
Enzymes are useful tools as specific analytical reagents. Two different analysis methods were developed for use in the separate fields of protein science and organic synthesis. Both methods rely on the substrate specificity of enzymes. Enzyme catalysis and substrate specificity is described and put in context with each of the two developed methods. In paper I a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage. In paper II and III, three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase, Candida antarctica lipase B and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD+. The conversion and enantiomeric excess of the sample could be calculated from the relative differences in absorbance. / QC 20101108

Page generated in 0.0409 seconds