• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epigenetic identification of novel 12p and 16q tumor suppressor genes for multiple carcinomas.

January 2007 (has links)
Lee, Kwan Yeung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 103-113). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of Content --- p.vi / List of Figures --- p.xi / List of Tables --- p.xiii / List of Abbreviations --- p.xiv / List of papers published during the study --- p.xvi / Chapter Chapter 1 --- Introduction and Aim of Study --- p.1 / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- Project objective and potential significances --- p.5 / Chapter Chapter 2 --- Literatures Review --- p.6 / Chapter 2.1 --- Cancer genetics and Tumor suppressor genes --- p.6 / Chapter 2.2 --- Epigenetic --- p.7 / Chapter 2.2.1 --- DNA methylation and promoter CpG island --- p.8 / Chapter 2.2.2 --- Establishment and maintenance of DNA methylation --- p.9 / Chapter 2.2.3 --- Transcriptional silencing by DNA hypermethylation --- p.9 / Chapter 2.3 --- Cancer epigenetic --- p.11 / Chapter 2.3.1 --- Hypomethylation of the cancer genome --- p.12 / Chapter 2.3.2 --- Hypermethylation in cancers --- p.12 / Chapter 2.3.3 --- Clinical relevance of cancer epigenetic --- p.13 / Chapter 2.4 --- Nasopharyngeal carcinoma --- p.14 / Chapter 2.4.1 --- NPC genetic and epigenetic --- p.15 / Chapter 2.5 --- 12p as a putative tumor suppressor locus --- p.16 / Chapter 2.5.1 --- Hematological malignancies associated with 12p loss --- p.17 / Chapter 2.5.2 --- Prostate cancer associated with 12p loss --- p.20 / Chapter 2.5.3 --- Lung cancer associated with 12p loss --- p.22 / Chapter 2.5.4 --- 12p deletion in other cancers --- p.23 / Chapter 2.6 --- 16q as a tumor suppressor locus --- p.24 / Chapter 2.6.1 --- Breast cancer and 16q --- p.25 / Chapter 2.6.2 --- Loss of 16q and prostate cancer --- p.26 / Chapter 2.6.3 --- Loss of 16q and hepatocellular carcinoma --- p.28 / Chapter 2.6.4 --- 16q deletion associated with other cancers --- p.29 / Chapter Chapter 3 --- Materials and Methods --- p.30 / Chapter 3.1 --- Cell lines and tissue samples --- p.30 / Chapter 3.1.1 --- Cell lines --- p.30 / Chapter 3.1.2 --- Maintenance of cell lines --- p.31 / Chapter 3.1.3 --- Drugs treatment of cell lines --- p.31 / Chapter 3.1.4 --- Normal tissues --- p.32 / Chapter 3.1.5 --- Total RNA extraction --- p.32 / Chapter 3.1.6 --- Genomic DNA extraction --- p.32 / Chapter 3.2 --- General techniques --- p.33 / Chapter 3.2.2 --- TA cloning and blunt end cloning of PCR product --- p.33 / Chapter 3.2.3 --- Transformation of cloning products to E. coli competent cells --- p.34 / Chapter 3.2.4 --- Preparation of plasmid DNA --- p.34 / Chapter 3.2.4.1 --- Mini-prep plasmid DNA extraction --- p.34 / Chapter 3.2.4.2 --- Midi-prep of plasmid DNA --- p.35 / Chapter 3.2.5 --- Measurement of DNA or RNA concentrations --- p.36 / Chapter 3.2.6 --- DNA sequencing of plasmid DNA and PCR products --- p.36 / Chapter 3.3 --- Preparation of reagents and medium --- p.37 / Chapter 3.4 --- Semi-quantitative Reverse-Transcription (RT) PCR expression analysis --- p.38 / Chapter 3.4.1 --- Reverse transcription reaction --- p.38 / Chapter 3.4.2 --- Semi-quantitative RT-PCR --- p.39 / Chapter 3.4.2.1 --- Primers design --- p.39 / Chapter 3.4.2.2 --- PCR reaction --- p.39 / Chapter 3.5 --- Methylation analysis of candidate genes --- p.40 / Chapter 3.5.1 --- Bisulfite treatment of genomic DNA --- p.41 / Chapter 3.5.2 --- Methylation-specific PCR (MSP) --- p.42 / Chapter 3.5.2.1 --- Bioinformatics prediction of CpG island --- p.42 / Chapter 3.5.2.2 --- Primers design --- p.42 / Chapter 3.5.2.3 --- PCR reaction --- p.42 / Chapter 3.5.3 --- Bisulfite Genomic Sequencing (BGS) --- p.43 / Chapter 3.5.3.1 --- Primers design --- p.43 / Chapter 3.5.3.2 --- PCR reaction --- p.44 / Chapter 3.6 --- Construction of expression vectors of candidate genes --- p.44 / Chapter 3.6.1 --- Construction of IRF8 expression vector --- p.44 / Chapter 3.6.2 --- Construction of PTPRO expression vector --- p.44 / Chapter 3.6.2.1 --- Experimental design --- p.44 / Chapter 3.6.2.2 --- PCR and cloning of PCR products --- p.46 / Chapter 3.6.2.3 --- Restriction digestion of cloning vectors and expression vector --- p.48 / Chapter 3.6.2.4 --- Ligation of cloning fragments --- p.48 / Chapter 3.7 --- Colony formation assay on monolayer culture --- p.48 / Chapter 3.8 --- Statistical analysis --- p.49 / Chapter Chapter 4 --- Identification of candidate TSGs in deleted regions --- p.50 / Chapter 4.1 --- Research plan --- p.50 / Chapter 4.2 --- Results --- p.50 / Chapter 4.2.1 --- Mapping of the deleted B AC clones on their chromosomal locations --- p.50 / Chapter 4.2.2 --- Identification of down-regulated genes in NPC by semi-quantitative RT-PCR analysis --- p.51 / Chapter 4.3 --- Discussion --- p.55 / Chapter Chapter 5 --- Tumor suppressor function studies of candidate TSGs --- p.60 / Chapter 5.1 --- Research plan --- p.60 / Chapter 5.2. --- IRF8 is the 16q candidate TSG --- p.60 / Chapter 5.2.1 --- Frequent silencing of IRF8 mRNA expression in multiple carcinomas --- p.60 / Chapter 5.2.2 --- Methylation status of IRF8 promoter region correlated with its transcriptional silencing --- p.62 / Chapter 5.2.3 --- Restoration of IRF8 expression by pharmacological and genetic demethylation --- p.65 / Chapter 5.2.4 --- IRF8 inhibited the anchorage dependent growth of tumor cells on monolayer culture --- p.67 / Chapter 5.2.5 --- Discussion --- p.68 / Chapter 5.3 --- PTPRO is the down-regulated target at 12pl3.2-12.3 tumor suppressor locus --- p.73 / Chapter 5.3.1 --- Frequent silencing of PTPRO in multiple carcinoma cell lines --- p.73 / Chapter 5.3.2 --- Frequent methylation of PTPRO promoter CpG island in multiple carcinoma cell lines correlated with its reduced expression --- p.74 / Chapter 5.3.3 --- Re-expression of PTPRO by pharmacological and genetic demethylation --- p.77 / Chapter 5.3.4 --- PTPRO inhibited the growth of tumor cells in vitro --- p.79 / Chapter 5.3.5 --- Discussion --- p.81 / Chapter 5.4 --- RERG is another candidate TSG in 12pl3.2 - 12.3 region --- p.87 / Chapter 5.4.1 --- Down-regulation of RERG mRNA expression in carcinoma cell line --- p.87 / Chapter 5.4.2 --- Hypermethylation of RERG promoter is a frequent event in multiple carcinomas --- p.88 / Chapter 5.4.3 --- Re-expression of RERG mRNA following pharmacological and genetic demethylation --- p.90 / Chapter 5.4.4 --- Discussion --- p.92 / Chapter Chapter 6 --- General discussion --- p.96 / Chapter Chapter 7 --- Summary --- p.101 / Reference --- p.103
2

Identification of novel candidate tumor suppressor genes at 5q and 14q for multiple carcinomas by integrative genomics and epigenetics.

January 2007 (has links)
Ng, Ka Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 103-113). / Abstracts in English and Chinese. / Acknowledgements --- p.i / List of abbreviations --- p.ii / List of Tables --- p.iv / List of Figures --- p.v / List of Publications --- p.viii / Abstract in English --- p.ix / Abstract in Chinese --- p.xi / Table of Contents --- p.xiii / Chapter Chapter 1 --- Literature Review --- p.1 / Chapter 1.1 --- Tumor suppressor genes (TSGs) and the modes of TSG inactivation during carcinogenesis --- p.1 / Chapter 1.2 --- Epigenetic modifications --- p.3 / Chapter 1.2.1 --- DNA methylation --- p.4 / Chapter 1.2.1a --- Establishment of DNA methylation patterns and DNA methyltransferases --- p.5 / Chapter 1.2.1b --- DNA hypermethylation and carcinogenesis --- p.6 / Chapter 1.2.1c --- Mechanism for gene silencing by CpG methylation --- p.6 / Chapter 1.2.1d --- DNA hypomethylation and carcinogenesis --- p.10 / Chapter 1.2.1e --- Loss of imprinting and carcinogenesis --- p.11 / Chapter 1.2.1f --- Potential factors leading to aberrant methylation patterns in cancers --- p.12 / Chapter 1.2.2 --- Deregulation of histone modifications and carcinogenesis --- p.14 / Chapter 1.2.3 --- Interplay between chromatin modifications and DNA methylation --- p.15 / Chapter 1.3 --- Identification of tumor suppressor genes (TSGs) --- p.17 / Chapter 1.4 --- Nasopharyngeal carcinoma as a cancer model of the current project --- p.18 / Chapter 1.5 --- Genetic and epigenetic changes in NPC --- p.19 / Chapter 1.6 --- Involvement of 5qll-ql2 and 14q32 in carcinogenesis --- p.22 / Chapter 1.6.1 --- Chromosome 5ql l-ql2 and carcinogenesis --- p.22 / Chapter 1.6.2 --- Chromosome 14q32 and carcinogenesis --- p.24 / Chapter 1.7 --- Clinical implications of epigenetics in cancers --- p.27 / Chapter Chapter 2 --- Aims of study and Research plan --- p.31 / Chapter Chapter 3 --- Materials and Methods --- p.34 / Chapter 3.1 --- Cell lines and Normal Tissues --- p.35 / Chapter 3.2 --- Routine cell line maintenance --- p.35 / Chapter 3.3 --- Drug treatments --- p.35 / Chapter 3.4 --- Total RNA extraction --- p.35 / Chapter 3.5 --- Genomic DNA extraction --- p.36 / Chapter 3.6 --- General techniques --- p.37 / Chapter 3.6.1 --- Gel electrophoresis --- p.37 / Chapter 3.6.2 --- DNA and RNA quantification --- p.37 / Chapter 3.6.3 --- LB medium and LB plate preparation --- p.38 / Chapter 3.6.4 --- Plasmid extraction --- p.38 / Chapter 3.6.4a --- Mini-scale preparation of plasmid DNA --- p.38 / Chapter 3.6.4b --- Large-scale preparation of endotoxin-free plasmid DNA --- p.39 / Chapter 3.6.5 --- DNA sequencing --- p.39 / Chapter 3.7 --- Reverse transcription-PCR (RT-PCR) --- p.40 / Chapter 3.7.1 --- Reverse transcription (RT) --- p.40 / Chapter 3.7.2 --- Semi-quantitative RT-PCR --- p.41 / Chapter 3.8 --- Methylation analysis --- p.42 / Chapter 3.8.1 --- Sodium bisulfite modification of DNA --- p.42 / Chapter 3.8.2 --- CpG island analysis --- p.42 / Chapter 3.8.3 --- Methylation-specific PCR (MSP) --- p.43 / Chapter 3.8.4 --- Bisulfite genomic sequencing (BGS) --- p.44 / Chapter 3.9 --- Construction of expression plasmids --- p.45 / Chapter 3.9.1 --- Construction of the MGC80-expressing vector --- p.45 / Chapter 3.9.2 --- Construction of the TUSC14-expressing vector --- p.46 / Chapter 3.10 --- Functional analyses --- p.47 / Chapter 3.10.1 --- Monolayer colony formation assay --- p.47 / Chapter 3.10.2 --- Soft agar assay --- p.48 / Chapter 3.11 --- Statistical analysis --- p.49 / Chapter Chapter 4 --- Results --- p.50 / Chapter 4.1 --- Identification of 5qll-ql2 and 14q32.2-q32.32 as frequently deleted regions in NPC by aCGH --- p.50 / Chapter 4.2 --- Identification of novel candidate TSGs at chromosome 5qll-ql2 through integrative genomics and epigenetics --- p.51 / Chapter 4.2.1 --- Expression profiling of the candidate genes at 5ql l-ql2 in NPC cell lines --- p.51 / Chapter 4.2.2 --- MGC80 as a target of study at 5ql2 --- p.54 / Chapter 4.2.2a --- Ubiquitous expression in normal human tissues and frequent down-regulation of MGC80 in multiple tumor cell lines --- p.54 / Chapter 4.2.2b --- Methylation analysis of MGC80 --- p.56 / Chapter 4.2.2c --- Restoration of MGC80 expression after pharmacologic and genetic demethylation --- p.59 / Chapter 4.2.2d --- Functional study of MGC80 in multiple carcinomas --- p.61 / Chapter 4.2.2e --- Discussion --- p.63 / Chapter 4.2.3 --- TUSC14 as a target of study at 5ql2 --- p.67 / Chapter 4.2.3a --- TUSC14 was broadly expressed in normal human tissues and frequently down-regulated in multiple tumor cell lines --- p.67 / Chapter 4.2.3b --- Methylation analysis of TUSCI4 --- p.69 / Chapter 4.2.3c --- Pharmacologic and genetic demethylation reactivated TUSC14 expression --- p.72 / Chapter 4.2.3d --- Functional study ofTUSC14 in multiple carcinomas --- p.74 / Chapter 4.2.3e --- Discussion --- p.76 / Chapter 4.3 --- Identification of candidate TSGs at chromosome 14q32 through integrative genomics and epigenetics --- p.80 / Chapter 4.3.1 --- Expression profiling of the candidate genes at 14q32 in NPC cell lines --- p.80 / Chapter 4.3.2 --- DLK1 as a target of study at 14q32 --- p.82 / Chapter 4.3.2a --- Expression analysis of DLK1 in normal tissues and NPC cell lines --- p.82 / Chapter 4.3.2b --- Methylation analysis ofDLKl in NPC --- p.83 / Chapter 4.3.2c --- Restoration of DLK1 expression after pharmacologic demethylation --- p.84 / Chapter 4.3.2d --- Functional study ofDLKl in NPC --- p.85 / Chapter 4.3.2e --- Discussion --- p.87 / Chapter Chapter 5 --- General discussion --- p.92 / Chapter Chapter 6 --- Summary --- p.99 / Chapter Chapter 7 --- Future study --- p.101 / Reference list --- p.103

Page generated in 0.0522 seconds