• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de uma agulha para terapia celular e biópsia direta ou percutânea do coração / Development of a needle for percuttaneous heart cell therapy and biopsy

Soubihe Junior, Nathan Valle 16 May 2016 (has links)
Introdução:O papel das biopsias do miocárdio, tem tido relativa importância em cardiologia, sendo método diagnóstico fundamental em um pequeno número de patologias do coração como na doença por depósito de glicogênio, amiloidose, hemocromatose e nas miocardites. Ao longo dos anos, o desenvolvimento de diferentes procedimentos que possibilitam a obtenção de fragmentos do tecido cardíaco passou por diversos estágios e evoluída miocardiectomia a céu-aberto aos cateteres endovasculares, passando por procedimentos com agulhas de punção. Estes apesar de estar em desuso atualmente, têm particular importância por proporcional acesso ao miocárdio e a cavidade ventricular esquerda. Paralelamente, a terapia celular tem sido utilizada na recuperação e preservação da função cardíaca em coronariopatia crônica e na doença de chagas. As punções biópsias do coração ressurgem como possível método alternativo de acesso ao miocárdio e implante de material biológico para terapia celular. Objetivos:apresentar instrumento de punção, biopsia e injeção intramiocárdica de material biológico, padronizar a técnica e atestar a segurança do método.A adaptação consiste em um sistema de escarificação do miocárdio para permitir melhor fixação de células-tronco. O objetivo do presente trabalho visa apenas o desenvolvimento da agulha e testar histologicamente a qualidade das biópsias. Método: O instrumento para punção e injeção de material biológico é composto por uma agulha exterior (1), chamado de acoplamento de infusão, o qual contém na sua extremidade uma ponta romba (2) e vários orifícios de 0,5 mm de diâmetro (3). Internamente, está equipado com uma agulha com um mandril fechado, que quando introduzidas no exterior, pode ser mobilizada para dentro para encher os orifícios laterais ocluindo ou soltá-los. O procedimento para a produção de microlesões micro é feito através da troca do mandril de ponta romba (durante o procedimento) por um mandril escova (4), provido de microcerdas que são estruturalmente concebidas para preencher os orifícios com a exteriorização das pequenas cerdas (5). O instrumento está equipado com um mecanismo de bloqueio, que permite a sua mobilização perfeita como uma única unidade de microlesões ou, ainda pode ser utilizado somente como uma agulha externa, de modo que pode tornar-se um instrumento de injeção biológica. Resultado: A técnica já foi testada em modelo suíno vivo mostrando sua viabilidade e segurança. Como resultados são apresentados aspectos macroscópicos e microscópicos do coração (Corantes Hematoxilina eosina, Tricrômico Masson e Azul de Evans).Conclusão: No tocante a sua função o novo Instrumento de punção/infusão tem por característica principal o fato de ser multifuncional. Permite ao operador acessar a cavidade ventricular esquerda por via transtorácica sem risco de lesão (perfuração), das artérias coronárias. Permite penetrar o miocárdio sem laceração das fibras musculares pela divulsionamento das mesmas e escarificar o miocárdio. gerando micro-lesões musculares por intermédio de seu mandril com cerdas, promovendo a \"inflamação benéfica ao processo de transplante celular. / Introduction: The role of myocardial biopsy has had relative importance in cardiology, being fundamental diagnostic method in a small number of diseases of the heart as in glycogen deposit disease, amyloidosis, hemochromatosis and in miocardites. Over the years, the development of different procedures that allow obtaining cardiac tissue fragments went through several stages and evolved from open miocardiectomy to endovascular catheters, going through procedures with puncture needles. These despite being in disuse today, have particular importance for offering access to myocardium and left ventricular cavity. At the same time, the Cellular therapy has been used in the recovery and preservation of cardiac function in chronic coronary artery disease and Chagas disease. The puncture-heart biopsies to re-emerge as a possible alternative method of access to the myocardium and implantable biomaterial for cell therapy. Objectives: Objectives: to present puncture tool, biopsy and intramyocardial injection of biological material, standardizing the technical and certify the safety of the method. The adaptation allows in a myocardial scarification system for making possible a better stem cells fixation. The objective of this study covers only the development of needle and test, macroscopically and histologically the quality of biopsies. Methods: The instrument for puncturing and injection of biological material is composed of an external needle (1), called coupling infusion, which contains at its end a blunt tip (2) and multiple 0.5 mm diameter holes (3). Internally it is fitted with a blunt mandrill needle, which when introduced into the external, can be mobilized inside to fill the lateral holes occluding or releasing them. The procedure for producing micro lesions is done by exchanging the blunt mandrill (during the procedure) for a brush-mandrill (4), provided with micro bristles that are structurally designed to fill the holes with small exteriorization of bristles (5). The instrument is equipped with a locking mechanism, which allows its perfect mobilization as one single unit for micro lesions or it can be used only as an external needle so it can become a biological injection instrument.Result: The technique has been tested in vivo pig model showing its feasibility and safety. The results are presented through macroscopic and microscopic aspects of the heart (dyes hematoxylin eosin, Masson Masson and Evans blue).Conclusion: Regarding its function the new instrument is to be multifunctional main feature. It allows the operator to access the left ventricular cavity through transthoracic without risk of injury (perforation) of the coronary arteries. It allows penetrate the myocardial laceration of the muscle fibers by divulsionamento of them and rip the myocardium. generating muscle micro-injuries through its arbor with bristles, promoting \"inflammation beneficial to the cell transplant process.Key words: heart biopsy puncture, infusion of stem cells in the heart.
2

Genetic Engineering of Excitable Cells for In Vitro Studies of Electrophysiology and Cardiac Cell Therapy

Kirkton, Robert David January 2012 (has links)
<p>Disruption of coordinated impulse propagation in the heart as a result of fibrosis or myocardial infarction can create an asynchronous substrate with poor conduction and impaired contractility. This can ultimately lead to cardiac failure and make the heart more vulnerable to life-threatening arrhythmias and sudden cardiac death. The transplantation of exogenous cells into the diseased myocardium, "cardiac cell therapy," has been proposed as a treatment option to improve compromised cardiac function. Clinical trials of stem cell-based cardiac therapy have shown promising results, but also raised concerns about our inability to predict or control the fate of implanted cells and the electrical consequences of their interactions with host cardiomyocytes. Alternatively, genetically engineered somatic cells could be implanted to selectively and safely modify the cardiac electrical substrate, but their unexcitable nature makes them incapable of electrically repairing large conduction defects. The objective of this thesis was thus to develop a methodology to generate actively conducting excitable cells from an unexcitable somatic cell source and to demonstrate their utility for studies of basic electrophysiology and cardiac cell therapy.</p><p>First, based on the principles of cardiac action potential propagation, we applied genetic engineering techniques to convert human unexcitable cells (HEK-293) into an autonomous source of excitable and conducting cells by the stable forced expression of only three genes encoding an inward rectifier potassium (Kir2.1), a fast sodium (Na<sub>v</sub>1.5), and a gap junction (Cx43) channel. Systematic pharmacological and electrical pacing studies in these cells revealed the individual contributions of each expressed channel to action potential shape and propagation speed. Conduction slowing and instability of induced arrhythmic activity was shown to be governed by specific mechanisms of I<sub>Na</sub> inhibition by TTX, lidocaine, or flecainide. Furthermore, expression of the Na<sub>v</sub>1.5 A1924T mutant sodium channel or Ca<sub>v</sub>3.3 T-type calcium channel was utilized to study the specific roles of these channels in action potential conduction and demonstrate that genetic modifications of the engineered excitable cells in this platform allow quantitative correlations between single-cell patch clamp data and tissue-level function.</p><p>We further performed proof-of-concept experiments to show that networks of biosynthetic excitable cells can successfully repair large conduction defects within primary excitable tissue cultures. Specifically, genetically engineered excitable cells supported active action potential propagation between neonatal rat ventricular myocytes (NRVMs) separated by at least 2.5 cm in 2-dimensional and 1.3 cm in 3-dimensional cocultures. Using elastic films with micropatterned zig-zag NRVM networks that mimicked the tortuous conduction patterns observed in cardiac fibrosis, we showed that electrical resynchronization of cardiomyocyte activation by application of engineered excitable cells improved transverse conduction by 370% and increased cardiac twitch force amplitude by 64%. This demonstrated that despite being noncontractile, engineered excitable cells could potentially improve both the electrical and mechanical function of diseased myocardial tissue. </p><p>Lastly, we investigated how activation and repolarization gradients at the interface between cardiomyocytes and other excitable cells influence the vulnerability to conduction block. Microscopic optical mapping of action potential propagation was used to quantify dispersion of repolarization (DOR) in micropatterned heterocellular strands in which either well-coupled or poorly-coupled engineered excitable cells with a short action potential duration (APD), seamlessly interfaced with NRVMs that had a significantly longer APD. The resulting electrical gradients originating from the underlying heterogeneity in intercellular coupling and APD dispersion were further manipulated by the application of barium chloride (BaCl2) to selectively prolong APD in the engineered cells. We measured how the parameters of DOR affected the vulnerable time window (VW) of conduction block and found a strong linear correlation between the size of the repolarization gradient and VW. Reduction of DOR by BaCl2 significantly reduced VW and showed that VW correlated directly with dispersion height but not width. Conversely, at larger DOR, VW was inversely correlated with the dispersion width but independent of the dispersion height. In addition, despite their similar APDs, poorly-coupled excitable cells were found to significantly increase the maximum repolarization gradient and VW compared to well-coupled excitable cells, but only at larger DOR.</p><p>In summary, this thesis presents the novel concept of genetically engineering membrane excitability and impulse conduction in previously unexcitable somatic cells. This biosynthetic excitable cell platform is expected to enable studies of ion channel function in a reproducible tissue-level setting, promote the integration of theoretical and experimental studies of action potential propagation, and stimulate the development of novel gene and cell-based therapies for myocardial infarction and cardiac arrhythmias.</p> / Dissertation
3

Desenvolvimento de uma agulha para terapia celular e biópsia direta ou percutânea do coração / Development of a needle for percuttaneous heart cell therapy and biopsy

Nathan Valle Soubihe Junior 16 May 2016 (has links)
Introdução:O papel das biopsias do miocárdio, tem tido relativa importância em cardiologia, sendo método diagnóstico fundamental em um pequeno número de patologias do coração como na doença por depósito de glicogênio, amiloidose, hemocromatose e nas miocardites. Ao longo dos anos, o desenvolvimento de diferentes procedimentos que possibilitam a obtenção de fragmentos do tecido cardíaco passou por diversos estágios e evoluída miocardiectomia a céu-aberto aos cateteres endovasculares, passando por procedimentos com agulhas de punção. Estes apesar de estar em desuso atualmente, têm particular importância por proporcional acesso ao miocárdio e a cavidade ventricular esquerda. Paralelamente, a terapia celular tem sido utilizada na recuperação e preservação da função cardíaca em coronariopatia crônica e na doença de chagas. As punções biópsias do coração ressurgem como possível método alternativo de acesso ao miocárdio e implante de material biológico para terapia celular. Objetivos:apresentar instrumento de punção, biopsia e injeção intramiocárdica de material biológico, padronizar a técnica e atestar a segurança do método.A adaptação consiste em um sistema de escarificação do miocárdio para permitir melhor fixação de células-tronco. O objetivo do presente trabalho visa apenas o desenvolvimento da agulha e testar histologicamente a qualidade das biópsias. Método: O instrumento para punção e injeção de material biológico é composto por uma agulha exterior (1), chamado de acoplamento de infusão, o qual contém na sua extremidade uma ponta romba (2) e vários orifícios de 0,5 mm de diâmetro (3). Internamente, está equipado com uma agulha com um mandril fechado, que quando introduzidas no exterior, pode ser mobilizada para dentro para encher os orifícios laterais ocluindo ou soltá-los. O procedimento para a produção de microlesões micro é feito através da troca do mandril de ponta romba (durante o procedimento) por um mandril escova (4), provido de microcerdas que são estruturalmente concebidas para preencher os orifícios com a exteriorização das pequenas cerdas (5). O instrumento está equipado com um mecanismo de bloqueio, que permite a sua mobilização perfeita como uma única unidade de microlesões ou, ainda pode ser utilizado somente como uma agulha externa, de modo que pode tornar-se um instrumento de injeção biológica. Resultado: A técnica já foi testada em modelo suíno vivo mostrando sua viabilidade e segurança. Como resultados são apresentados aspectos macroscópicos e microscópicos do coração (Corantes Hematoxilina eosina, Tricrômico Masson e Azul de Evans).Conclusão: No tocante a sua função o novo Instrumento de punção/infusão tem por característica principal o fato de ser multifuncional. Permite ao operador acessar a cavidade ventricular esquerda por via transtorácica sem risco de lesão (perfuração), das artérias coronárias. Permite penetrar o miocárdio sem laceração das fibras musculares pela divulsionamento das mesmas e escarificar o miocárdio. gerando micro-lesões musculares por intermédio de seu mandril com cerdas, promovendo a \"inflamação benéfica ao processo de transplante celular. / Introduction: The role of myocardial biopsy has had relative importance in cardiology, being fundamental diagnostic method in a small number of diseases of the heart as in glycogen deposit disease, amyloidosis, hemochromatosis and in miocardites. Over the years, the development of different procedures that allow obtaining cardiac tissue fragments went through several stages and evolved from open miocardiectomy to endovascular catheters, going through procedures with puncture needles. These despite being in disuse today, have particular importance for offering access to myocardium and left ventricular cavity. At the same time, the Cellular therapy has been used in the recovery and preservation of cardiac function in chronic coronary artery disease and Chagas disease. The puncture-heart biopsies to re-emerge as a possible alternative method of access to the myocardium and implantable biomaterial for cell therapy. Objectives: Objectives: to present puncture tool, biopsy and intramyocardial injection of biological material, standardizing the technical and certify the safety of the method. The adaptation allows in a myocardial scarification system for making possible a better stem cells fixation. The objective of this study covers only the development of needle and test, macroscopically and histologically the quality of biopsies. Methods: The instrument for puncturing and injection of biological material is composed of an external needle (1), called coupling infusion, which contains at its end a blunt tip (2) and multiple 0.5 mm diameter holes (3). Internally it is fitted with a blunt mandrill needle, which when introduced into the external, can be mobilized inside to fill the lateral holes occluding or releasing them. The procedure for producing micro lesions is done by exchanging the blunt mandrill (during the procedure) for a brush-mandrill (4), provided with micro bristles that are structurally designed to fill the holes with small exteriorization of bristles (5). The instrument is equipped with a locking mechanism, which allows its perfect mobilization as one single unit for micro lesions or it can be used only as an external needle so it can become a biological injection instrument.Result: The technique has been tested in vivo pig model showing its feasibility and safety. The results are presented through macroscopic and microscopic aspects of the heart (dyes hematoxylin eosin, Masson Masson and Evans blue).Conclusion: Regarding its function the new instrument is to be multifunctional main feature. It allows the operator to access the left ventricular cavity through transthoracic without risk of injury (perforation) of the coronary arteries. It allows penetrate the myocardial laceration of the muscle fibers by divulsionamento of them and rip the myocardium. generating muscle micro-injuries through its arbor with bristles, promoting \"inflammation beneficial to the cell transplant process.Key words: heart biopsy puncture, infusion of stem cells in the heart.

Page generated in 0.1103 seconds