• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 25
  • 25
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis, characterization and integration of piezoelectric zinc oxide nanowires

Aguilar, Carlos Andres 25 September 2012 (has links)
An automatic implantable cardiac defibrillator (AICD) is a device that is implanted in the chest to constantly monitor and, if necessary, correct episodes of arrhythmia. While the longevity of the average AICD patient has increased to 10 years after implantation, only 5% of implants functioned for seven years, and this mismatch poses a significant and ever growing clinical and economic burden. Moreover, there are now efforts to “piggyback” devices on AICDs and BVPs for additional functionality, all of which require more power. An innovative approach towards generating power for AICDs is to harness the energy of the heart by embedding energy generators in AICD leads. The cardiovascular system as a source generator is appealing due to its ability to continuously deliver mechanical energy as long as the patient is alive. Herein a device incorporating nanostructured piezoelectrics was developed as a means to harvest the energy of heart. The generator system integrates inorganic piezoelectric nanomaterials, including aligned arrays of nanowires of crystalline zinc oxide (ZnO), with elastomeric substrates. The design combines several innovative structural configurations including a “wavy” flexible electrode and a layout where the nanowires are near or on the neutral mechanical plane. A wet synthetic strategy to reliably prepare piezoelectric ZnO nanostructures directly onto the devices was also developed and optimized to produce nanowires with high densities, large aspect ratios and high orientation. The elastomeric support permits direct integration within AICD leads and is small and flexible enough to not add resistance in systole. The flexible devices were integrated into a testbed mimicking the input a failing right ventricle and the results demonstrate progress towards energy harvesting from the cardiovascular system. A model was developed to gain insight as to how to structure the nanowire array within the latitude of the synthesis to boost the energy production. To further improve the output, the nanowires were passivated with dipolar molecules to change their resistivities and the barrier height of the Schottky contact. A novel low photon energy photoelectron spectroscopy tool was developed to measure the effects of the molecules on the individual nanowire properties. This concept of using nanostructured piezoelectrics as a means to convert the energy of the body may in the coming years represent a paradigm shift from battery dependant AICD modules to completely autonomous functional systems. / text
22

STT event stream feature to assist sofrware [sic] testing of implantable devices in St. Jude Medical a thesis /

Park, Yong Jin. Griffin, Lanny V., January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Title from PDF title page; viewed on March 11, 2009. "February 2009." "In partial fulfillment of the requirements for the degree [of] Master of Science in Engineering with Specializations in Biomedical Engineering." "Presented to the faculty of California Polytechnic State University, San Luis Obispo." Major professor: Lanny Griffin, Ph.D. Includes bibliographical references (p. 42). Also available on microfiche.
23

Cellular electrophysiology of cardiac pacemaker channel-implications on novel drug and gene therapies development

Chan, Yau-chi, January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaves 156-176) Also available in print.
24

Cellular electrophysiology of cardiac pacemaker channel-implications on novel drug and gene therapies development /

Chan, Yau-chi, January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaves 156-176) Also available online.
25

Device, Method, and Algorithm to Assess Changes in Cardiac Output via Intracardiac Impedance Monitoring

Schau, Geoffrey Fredrick 12 June 2015 (has links)
Cardiac output, the volume of blood pumped by the heart over time, is a powerful clinical metric used by physicians to assess overall cardiac health and patient well-being. However, current cardiac output estimation methods are typically invasive, time-consuming, expensive, or some combination of all three. Patients that receive artificial cardiac pacemaker devices are particularly susceptible to cardiac dysfunction and often require long-term cardiac monitoring support. This thesis proposes a novel cardiac output monitoring solution which leverages an implantable intracardiac medical device. The principles of traditional impedance cardiography, an established cardiac output monitoring technique in practice for over fifty years, have been adapted to incorporate a leadless artificial cardiac pacemaker, an implantable medical device contained entirely within the heart. This novel method, colloquially referred to as Z-Cardio, monitors time-varying intracardiac impedance modulation to assess changes in cardiac output. In this study, technologies both old and new are synthesized to produce a novel and effective method of monitoring a critical metric of cardiac health.

Page generated in 0.0473 seconds