• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Myocyte Derived Cardiac Spheroids for Post Infarct Cardiac Regeneration

Burford, Evans J 29 January 2014 (has links)
Research has shown that autologous progenitor-like cardiac spheroids, when delivered to an infarcted heart, are able to restore mechanical function. These spheroids are made by isolating and expanding autologous cardiac progenitor cells. Though these results are promising, the process for creating cardiac spheroids is inefficient and time consuming, requiring a large amount of cardiac tissue. For every 10,000 cardiac myocytes in the heart there is only one cardiac progenitor cell; requiring a large amount of initial tissue. This clinical limitation could be overcome if cardiac myocytes, which are more abundant than cardiac progenitor cells, could be used to make cardiac spheroids. Research has shown that mesenchymal stem cells when co-cultured with adult cardiac myocytes cause the cardiac myocytes to behave like a progenitor cell. We found that, when co-cultured with mesenchymal stem cells, cardiac mycoytes could be made to form cardiac spheroid bodies. This was done by isolating adult myocytes from rat hearts and co-culturing them with human mesenchymal stem cells. After two weeks, cultures were observed to form spheroid bodies and the number of spheroids formed were compared to a pure myocyte control. Cardiac specific staining confirmed that the spheroids were made from the myocytes. It was also found that the mesenchymal stem cells, when co-cultured in the same well with the myocytes, form significantly more spheroids than myocytes treated with stem cell conditioned media. Further, no other cell type present in the co-cultures are able to create spheroid bodies when co-cultured with mycoytes or stem cells. The ability to create cardiac spheroid like bodies from adult myocytes offers a way to overcome the limitations of the time needed and the large quantity of autologous cardiac tissue required to currently make these types of bodies.
2

Testing Coagulation Potential of Extracellular Vesicles Derived from Aortic Stenosis Patients on Human Cardiac Spheroids

Nor Fuad, Muhammad Nafiz Ikhwan Bin January 2023 (has links)
Cardiovascular diseases have always been the leading cause of global morbidity and mortality. Aortic stenosis, which is a kind of cardiovascular disease has a high prevalence in elderlies that are 75 years and older. Currently, the only available treatment would be valve replacement surgery. Recently, a few studies have risen regarding the potential of extracellular vesicles to reduce the effects of aortic stenosis, hence allowing patients to opt for a non-life-threatening treatment in comparison to a surgical one. The goal within this study is to determine the pro-coagulability of extracellular vesicles (EVs) that were endogenously derived from human blood (patients and healthy individuals) and their effect on the coagulation cascade. This study was performed on cardiac spheroids that were formed through seeding human aortic endothelial cells in an ultra-low attachment 96-well plate for 96 hours. Spheroids were challenged with tumour necrosis factor-alpha (TNFα) for 24 hours prior to EVs incubation for 48 and 72 hours. The effects of EVs on these spheroids were observed in terms of their ability to induce tissue factor activity. There was no significant difference in the tissue factor activity between spheroids incubated with patient derived EVs or healthy individual derive EVs irrespective of TNFα challenge. To conclude, the results of this study were not significant to stipulate that extracellular vesicles are procoagulant. Hence, further research regarding their ability to reduce or rescue the effects of cardiovascular diseases needs to be performed.

Page generated in 0.0472 seconds