• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dysfonctions neuromusculaires et cardiovasculaires dans les troubles posturaux orthostatiques induits par la microgravité / Нейромышечные и сердечно-сосудистые нарушения при ортостатической и позной неустойчивости, обусловливаемые микрогравитацией

Dmitrieva, Liubov 20 September 2018 (has links)
Les atteintes posturales sont des conséquences connues du vol spatial. Un des facteurs de stabilité orthostatique et postural est le tonus musculaire, qui chute en microgravité. Les études sur les effets cardiovasculaires, neuromusculaires et posturaux de la microgravité sont nombreuses ; pourtant, le rôle des troubles neuromusculaires et cardiovasculaires dans l’atteinte orthostatique et posturale reste peu connu. Notre but était d’étudier des altérations vasculaires et neuromusculaires induites par la microgravité, ainsi que les liens entre eux. Nos études chez l’homme comprenaient un vol spatial de 6 mois, un alitement antiorthostatique de 21 jours et une immersion sèche de 3 à 5 jours. Ces conditions diffèrent par le niveau de stimulation d’appui. L'état cardiovasculaire a été évalué par des tests orthostatiques, neuromusculaire - par myotonométrie et la stabilité posturale - par stabilométrie. Notre travail montre qu’un vol de longue durée induit des troubles bien plus profonds que la microgravité simulé plus courte. De plus, l'immersion sèche induit des troubles plus graves que l'alitement, malgré sa durée plus courte. Nos données suggèrent que c'est la décharge d’appui qui définit la profondeur des perturbations. Le rôle principal de la diminution du tonus des muscles posturaux est mis en avant. Cette diminution se produit par voie réflexe par diminution d’afferentation des zones d’appui. Elle pourrait être responsable de l’intolérance orthostatique via la diminution de l'efficacité de la pompe musculaire favorisant le retour veineux, et de l’instabilité posturale - via l'augmentation des seuils de recrutement des motoneurones posturaux. / Postural and orthostatic impairment are both acknowledged consequences of spaceflight. One of the factors for orthostatic and postural stability is muscle tone, which decreases within the onset of microgravity. Studies of cardiovascular, neuromuscular and postural effects of microgravity are numerous ; yet the role of neuromuscular and vascular disorders in orthostatic and postural impairment remains unclear. We aimed to investigate vascular and neuromuscular alterations induced by microgravity, as well as their relationships. We studied healthy men exposed to 6-mo spaceflight, 21-day head-down bedrest and 3-to 5-day dry immersion. These conditions differ by the level of support unloading. Cardiovascular state was assessed by orthostatic tests, neuromuscular - by myotonometry, postural stability - by stabilometry. We found that long-term spaceflight induced much deeper disorders than relatively short-term modeled microgravity. Furthermore, immersion induced more severe disorders than bedrest, despite its shorter duration. Our data, along with literature, suggest that it is the support unloading that defines the depth of disturbances. The leading role in development of postural disorders under gravitational unloading belongs to decrease in postural muscle tone. This decrease occurs mainly by a reflex mechanism (decrease in support afferentation). It might be responsible for orthostatic impairment - via decrease in the efficiency of muscle pump promoting venous return, and for postural impairment - via increase in recruitment thresholds of postural motoneurons.
2

Interactions vestibulo-végétatives et évolution du baroréflexe carotidien au cours de deux modèles d'impesanteur : l'alitement prolongé tête déclive et l'immersion sèche / Vestibular-vegetative interactions and evolution of carotid baroreflex in two models of weightlessness : prolonged head-down bed rest and dry immersion

Abreu, Steven de 17 December 2019 (has links)
La suppression du vecteur gravité lors des vols spatiaux normalement orienté de la tête vers les pieds en position debout agit sur les fluides de l’organisme par la perte du gradient de pression hydrostatique, ce qui aboutit à un syndrome de déconditionnement cardio-vasculaire. Cette absence de gravité perturbe également le système vestibulaire, particulièrement les otolithes qui perdent leur capacité à détecter les inclinaisons de la tête. Nous avons conduit nos études chez l’homme à l’aide du modèle d’immersion sèche durant 3 jours ainsi que du modèle d’alitement anti-orthostatique durant 60 jours.Le but de notre premier travail de recherche est d’étudier l’influence du système otolithique sur la régulation du système cardio-vasculaire au travers du réflexe vestibulo-sympathique. Il a pour cela été utilisé des expérimentations de stimulation galvanique pour évaluer la sensibilité otolithique ainsi que des manœuvres de flexion de cou associées à des mesures cardio-vasculaires conventionnelles et de pléthysmographie. Un accéléromètre a, de plus, été utilisé pour quantifier les phases d’activité et d’inactivité.Le but de notre second travail de recherche est d’étudier l’évolution du baroréflexe carotidien au cours des modèles de stimulation d’impesanteur et d’établir d’éventuelles hypothèses d’interaction avec les afférences otolithiques. Il a pour cela été utilisé des mesures de pression artérielle et de fréquence cardiaque en réponse à des stimulations mécaniques des barorécepteurs carotidiens appliquées de façon directe via la technique du collier de pression.Nos résultats ont confirmé que la manœuvre de flexion du cou est bien une stimulation otolithique avec l’apparition des modifications de réactivité otolitiques seulement en décubitus ventral et non en décubitus latéral. Néanmoins le rôle du réflexe vestibulo-sympathique sur la régulation cardio-vasculaire n’est pas clairement mis en évidence. Par ailleurs, la sensibilité du baroréflexe carotidien au cours de ces protocoles n’est pas modifiée.Notre hypothèse générale d’une modification du contrôle cardio-vasculaire en lien avec la réduction de la stimulation otolithique au cours de protocoles de simulation d’impesanteur n’est pas vérifiée. Il reste à comprendre la signification réelle de la manœuvre du head-down neck flexion et son lien avec l’authentique stimulation otolithique qu’elle provoque. Il est vraisemblable que de multiples systèmes sensoriels interviennent dans la régulation cardio-vasculaire en lien avec la gravité. Le rôle spécifique du système vestibulaire sera vraisemblablement mieux appréhendé dans des situations où sa plasticité est le mieux mise en jeu c’est-à-dire en impesanteur réelle. / The removal of the gravity vector during spaceflight normally directed from the head to the feet in the standing position acts on the body fluids by the loss of the hydrostatic pressure gradient, which results in a cardiovascular deconditioning syndrome. This lack of gravity also disturbs the vestibular system, particularly otoliths that lose their ability to detect head tilts. We conducted our studies in humans using the 3-day dry immersion model and the 60-day anti-orthostatic bed rest model. The aim of our first research work is to study the influence of the otolithic system on the regulation of the cardiovascular system through the vestibulo-sympathetic reflex. For this purpose, galvanic stimulation experiments were used to evaluate otolithic sensitivity as well as neck flexion maneuvers associated with conventional cardiovascular and plethysmography measurements. In addition, an accelerometer has been used to quantify the activity and inactivity phases. The aim of our second research project is to study the evolution of the carotid baroreflex during weightlessness simulation models and to establish possible hypotheses of interaction with otolithic afferents. For this purpose, blood pressure and heart rate measurements were used in response to mechanical stimulations of carotid baroreceptors applied directly via the pressure collar technique. Our results confirmed that the neck flexion maneuver is indeed an otolithic stimulation with the appearance of otolitic changes of reactivity only in ventral decubitus and not in lateral decubitus. Nevertheless, the role of vestibulo-sympathetic reflex on cardiovascular regulation is not clearly demonstrated. Moreover, the sensitivity of the carotid baroreflex during these protocols is not modified. Our general hypothesis of a change in cardiovascular control related to the reduction of otolithic stimulation during weightless simulation protocols is not verified. It remains to understand the real meaning of the head-down neck flexion maneuver and its connection with the authentic otolithic stimulation it causes. It is likely that multiple sensory systems are involved in cardiovascular regulation in relation to gravity. The specific role of the vestibular system is likely to be better understood in situations where its plasticity is best brought into play, that is to say in real weightlessness.
3

Adaptation cardiovasculaire de l'astronaute : en confinement et en microgravité réelle et simulée / Astronaut's cardiovascular adaptation : in confinement, and in real and simulated microgravity

Provost, Romain 02 October 2015 (has links)
Le présent travail de Doctorat porte sur l’adaptation et le déconditionnement cardiovasculaire chez l’astronaute en microgravité réelle prolongée, en microgravité simulée de courte durée (avec et sans contremesures par hypergravité), et en confinement de longue durée. Afin de répondre à cette thématique, 3 études expérimentales sur l’humain ont été réalisées, et de fait, ce présent travail de Doctorat se divise en 3 parties distinctes. La première est la mission « Mars 500 » qui comprend un confinement de 520 jours de 6 sujets-volontaires. La seconde est le projet « Vessel Imaging » qui comprend un vol spatial respectif de 6 mois à bord de la « Station Spatiale Internationale (ISS) » de 10 sujets-astronautes. La troisième est l’étude «Short Time Bed-Rest (STBR)» (12 sujets) qui comprend une courte période de microgravité simulée par alitement prolongé à -6° (5 jours) avec et sans l’utilisation de deux contremesures cardiovasculaires par hypergravité (continue ou intermittente). / This PhD work focuses on astronaut cardiovascular adaptation and deconditioning in real prolonged microgravity, short simulated microgravity (with and without countermeasures) and long-term confinement. To answer to this topic 3 humans experimental studies have been performed, and thus the present PhD work is divided into 3 distinct parts . The first one is the mission « Mars 500 » which consists in 520-days confinement with 6 subjects-volunteers mission. The second is the project « Vessel Imaging » whitch consit in a 6-months spaceflight aboard the « International Space Station » with 10 subjects-astronauts. The third is the « Short Time Bed -Rest (STBR) » study (12 subjects) which consist in a short period of bedrest (-6°, 5 days) with and without the use of two cardiovascular countermeasures by hypergravity (continuous or intermittent).

Page generated in 0.1294 seconds