Spelling suggestions: "subject:"carnitine"" "subject:"karnitine""
21 |
The cloning of genes involved in carnitine-dependent activities in Saccharomyces cerevisiaeSwiegers, Jan Hendrik 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2000. / ENGLISH ABSTRACT: L-Carnitine is a unique and important compound in eukaryotic cells. In Saccharomyces
cerevisiae, L-carnitine plays a role in the transfer of acetyl groups from the peroxisomes to
the mitochondria. This takes place with the help of the carnitine acetylcarnitine shuttle. The
activated acyl group of acetyl-CoA in the peroxisome is transferred to carnitine with the
help of a peroxisomal carnitine acetyltransferase to form an acetylcarnitine ester, releasing
the CoA-SH. This ester is then transported through the peroxisomal membrane to the
cytosol from where it is transported to the mitochondrion. After transport of the
acetylcarnitine through the mitochondrial membranes, the reverse reaction takes place in
the matrix with the help of a mitochondrial carnitine acetyltransferase, releasing carnitine
and the acyl group. In S. cerevisiae, the main carnitine acetyltransferase contributing to
>95% of the total carnitine acetyltransferase activity, is encoded by a single gene, CAT2.
Cat2p has a peroxisomal and mitochondrial targeting signal and is located to the
peroxisomal membrane and the inner-mitochondrial membrane, respectively.
The reason for the activated acyl group to be transferred in the form of an acetylcarnitine,
is that the peroxisomal membrane is impermeable to acetyl-CoA. This means that the acyl
group needs to be transported in the form of intermediate compounds. Acetyl-CoA is
formed in the peroxisome of S. cerevisiae as a result of p-oxidation of fatty acids. In yeast,
the peroxisome is the sole site for p-oxidation. Fatty acids are transported to the
peroxisome where they are oxidized by the p-oxidation cycle to form two-carbon acyl
groups in the form of acetyl-CoA. These two-carbon acyl groups are then transferred from
the peroxisome to the rest of the cell for gluconeogenesis and other anabolic pathways, or
used in the tricarboxylic acid cycle (TCA) of the mitochondia to generate ATP. In this way,
it is possible for the cell to use fatty acid as a sole carbon source.
There is a second pathway allowing for the utilization of activated acyl groups produced in
the peroxisome and that is the glyoxylate cycle. The glyoxylate cycle is a modified TCA
cycle, which results in the synthesis of C4 succinate from two molecules of acetyl-CoA. In
S. cerevisiae, all of the enzymes of the glyoxylate cycle are located in the peroxisome
except for one, whereas in other yeasts studied, all of the glyoxylate enzymes are
peroxisomal. As a result of the glyoxylate cycle, the two carbons of acetyl-CoA can leave
the peroxisome in the form of succinate or other TCA intermediates like malate and citrate.
These compounds are transferred through dicarboxylic acid carriers present in the
peroxisomal membrane and used in further metabolic needs of the cell.
To understand the role of carnitine in the cell, a strategy for the cloning of genes involved
in carnitine-dependent activities in S. cerevisiae was developed. The disruption of the
citrate synthetase gene, CIT2, of the glyoxylate cycle yielded a strain that was dependent on carnitine when grown on the fatty acid oleic acid. This allowed for a mutagenesis
strategy based on negative selection of mutants affected in carnitine-dependent activities.
The ~cit2 strain was mutagenized and plated on minimal media. After replica plating on
oleic acid media, mutant strains were selected that were unable to grow even in the
presence of carnitine. In order to eliminate strains with defects in peroxisome biogenesis
and ~-oxidation, and only select for strains with defects in carnitine-dependent activities,
the mutant strains were transformed with the CIT2 gene to restore the glyoxylate cycle.
Mutants that grew on oleic acid after transformation, and which are therefore not affected
in activities independent of carnitine, were retained for further analysis. Transforming one
of these mutants with a S. cerevisiae genomic library for functional complementation,
yielded a clone carrying the YAT1 gene, coding for the carnitine acetyltransferase of the
outer-mitochondrial membrane. No phenotype had previously been assigned to a mutant
allele of this gene. / AFRIKAANSE OPSOMMING: L-Karnitien is 'n unieke en belangrike verbinding in eukariotiese selle. In Saccharomyces
cerevisiae speel L-karnitien In rol in die oordrag van asielgroepe van die peroksisoom na
die mitochondrion. Dit vind plaas met behulp van die karnitien-asetielkarnitien-weg. Die
geaktiveerde asiel groep van asetiel-KoA in die peroksisoom word na karnitien oorgedra
met behulp van 'n peroksisomale karnitien-asetielkarnitien-transferase-ensiem om 'n
asetielkarnitien ester te vorm, waarna die KoA-SH vrygestel word. Hierdie ester word dan
deur die peroksisomale membraan na die sitoplasma vervoer waarna dit na die
mitochondrion vervoer word. Nadat die asetielkarnitien deur die mitochondriale membrane
vervoer is, vind die omgekeerde reaksie in die matriks plaas met behulp van die
mitochondriale karnitien-asetielkarnitien-transferase-ensiem, waarna die karnitien en die
asielgroep vrygestel word. In S. cerevisiae word die hoof karnitien-asetielkarnitien
transferase wat tot >95% van die totale karnitien-asetielkarnitien-transferase-aktiwiteit
bydra, deur 'n enkele geen, CA T2 gekodeer. CAT2p het 'n peroksisomale en
mitochondriale teikensein en dit word onderskeidelik na die peroksisomale en binnemitochondriale
membrane gelokaliseer.
OPSOMMING
Die geaktiveerde asielgroep word in die vorm van 'n asetielkarnitien vervoer omdat die
peroksisomale membraan ondeurlaatbaar vir asetiel-KoA is. Dit beteken dat die
asielgroepe slegs in die vorm van intermediêre verbindings vervoer kan word. Asetiel-KoA
word weens p-oksidasie van vetsure in die peroksisoom van S. cerevisiae gevorm. In gis
is die peroksisoom die enigste plek waar p-oksidasie plaasvind. Vetsure word na die
peroksisoom vervoer waar dit deur die p-oksidasiesiklus geoksideer word om tweekoolstof
asielgroepe in die vorm van asetiel-KoA te vorm. Hierdie twee-koolstof
asielgroepe word dan vanaf die peroksisoom na die res van die sel vervoer vir
glukoneogenese en ander metaboliese paaie, of dit word in die trikarboksielsuursiklus
(TKS) van die mitochondrion gebruik om ATP te genereer. Op hierdie wyse is dit moontlik
vir die sel om vetsure as enigste koolstofbron te benut.
Die glioksilaatsiklus is 'n tweede weg wat die benutting van asielgroepe, wat in die
peroksisoom geproduseer is, toelaat. Die glioksilaatsiklus is 'n gemodifiseerde TKS-siklus
wat die sintese van C4 suksinaat van uit twee molekules asetiel-KoA bewerkstellig. In
teenstelling met ander giste waar al die glioksilaatsiklus ensieme in die peroksisoom geleë
is, kom een van S. cerevisiae se ensieme buite die peroksisoom voor. Die resultaat van
die glioksilaatsiklus is dat die twee koolstowwe van asetiel-KoA die peroksisoom in die
vorm van suksinaat of ander TKS-intermediêre verbindings soos malaat en sitraat, kan
verlaat. Hierdie verbindings word deur middel van dikarboksielsuur-transporters in die
peroksisomale membraan vervoer en word dan vir verdere metaboliese behoeftes in die
sel gebruik. Om die rol van karnitien in die sel te verstaan, is 'n strategie ontwikkel om gene wat by
karnitien-afhanklike aktiwiteite in S. cerevisiae betrokke is, te kloneer. Die disrupsie van
die sitraatsintesegeen, CIT2, van die glioksilaatsiklus het 'n ras gelewer wat van karnitien
vir groei op die vetsuur oleiensuur afhanklik was. Die fl.cit2-ras is gemuteer en op minimale
media uitgeplaat. Na replika-platering op oleiensuur media, is mutante rasse geselekteer
wat nie gegroei het nie, selfs nie in die teenwoordigheid van karnitien nie. Om mutantrasse
uit te skakel wat defekte in peroksisoom-biogenese en p-oksidasie het en net mutantrasse
te selekteer wat defekte in karnitien-afhanklike aktiwiteite het, is die rasse met die CIT2-
geen getransformeer om die glioksilaatsiklus te herstel. Mutante wat na transformasie op
oleiensuur gegroei het, en dus nie in aktiwiteite onafhanklik van karnitien geaffekteer is
nie, is behou en aan verdere analise blootgestel. Komplimentering van een van hierdie
mutante met 'n S. cerevisiae genomiese biblioteek, het 'n kloon wat die geen YAT1 bevat,
gelewer. YAT1 is 'n geen wat die karnitienasetieltransferase van die buite-mitochondriale
membraan kodeer. Geen fenotipe is ooit voorheen aan 'n mutant alleel in hierdie geen
toegeskryf nie.
|
22 |
The role of carnitine in eukaryotic cells : Using yeast as a modelDu Plessis, Michelle 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Previous studies in yeast in this laboratory have found carnitine to be both protective against
oxidative stress induced by hydrogen peroxide and to increase the detrimental effect of
dithiothreitol. These phenotypes were found to be independent of the role of carnitine within the
carnitine shuttle. A screen for suppressor mutations for these carnitine-dependent phenotypes
identified, among others, Δcho2 and Δopi3. Cho2p and Opi3p catalyse the sequential
methylation reactions in the formation of phosphatidylcholine from phosphatidylethanolamine.
Therefore, this study aimed to investigate the relationship between choline, phosphatidylcholine
and the carnitine phenotypes. Liquid growth assays of Δcho2 and Δopi3 cultures revealed that
addition of choline can restore the protective effects of carnitine against hydrogen peroxide. The
connection between the cellular phospholipid composition and the carnitine-dependent shuttleindependent
phenotypes was also investigated. Analysis of the lipid composition of cells by
LCMS showed that Δcho2 and Δopi3 had a largely different lipid composition compared with the
wild type, most notably, a reduction in phosphatidylcholine and an increase in triacylglycerol
content were observed for both mutants. These changes were reversed by supplementation
with choline. However, no effects on the lipid composition of cells in response to carnitine
treatment were observed, either when supplemented alone or in combination with DTT and
hydrogen peroxide.
Carnitine has also been investigated in mammalian systems for its potential to protect cells from
oxidative stress, an effect which would be of benefit in various neurodegenerative disorders.
Several studies have documented the positive effects of carnitine against oxidative stress in
mammalian cells however the mechanism behind this action remains unknown. It is therefore
thought that, provided similar effects for carnitine can be shown in mammalian cells as was
observed in yeast, it would be beneficial to use yeast as a model system for the study of the
molecular changes induced by carnitine. In view of this, the effects of carnitine on toxicity
induced by oxidative stress in mammalian neural cells were compared to that which has been
observed in yeast. For this purpose the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide (MTT) assay, a measure of reductive capacity of cells, was used. However, no effects
for carnitine were observed in the MTT assay in combination with either dithiothreitol or
paraquat. / AFRIKAANSE OPSOMMING: Vorige studies op gis in hierdie laboratorium het bevind dat karnitien beskermend is teenoor
oksidatiewe stres wat deur waterstofperoksied geïnduseer word en ook die nadelige effek van
ditiotreitol verhoog. Hierdie fenotipes is gevind om onafhanklik te wees van die rol van karnitien
binne die karnitien-pendel. Die sifting vir onderdrukker-mutasies van hierdie karnitienafhanklike
fenotipes het onder andere Δcho2 en Δopi3 geïdentifiseer. Cho2p en Opi3p kataliseer die
opvolgende metileringsreaksies tydens die vorming van fosfatidielcholien vanaf
fosfatidieletanolamien.
Hierdie studie het dus gepoog om die verhouding tussen cholien, fosfatidielcholien en die
karnitienfenotipes te ondersoek. Vloeistofanalises van Δcho2- en Δopi3-kulture het aangedui
dat die byvoeging van cholien die beskermende effekte van karnitien teenoor
waterstofperoksied kan herstel. Die verband tussen die sellulêre fosfolipiedsamestelling en die
karnitienafhanklike pendel-onafhanklike fenotipes is ook ondersoek. Die analise van die
lipiedsamestelling van selle deur middel van LCMS het getoon dat Δcho2 en Δopi3 ‘n grootliks
verskillende samestelling het in vergelyking met die wilde tipe, en daar is veral ‘n afname in
fosfatidielcholien en ‘n verhoging in triasielgliserol-inhoud vir beide mutante waargeneem.
Hierdie veranderinge is omgekeer deur aanvulling met cholien. Geen effekte op die
lipiedsamestelling van die selle is egter in reaksie op die karnitienbehandelings waargeneem
nie, hetsy toe dit alleen aangevul is of in kombinasie met ditiotreitol en waterstofperoksied.
Karnitien is ook in soogdierstelsels ondersoek vir sy potensiaal om selle teen oksidatiewe stres
te beskerm, ‘n effek wat groot voordeel sal inhou vir verskeie neurodegeneratiewe steurings.
Verskeie studies het reeds die positiewe effekte van karnitien teen oksidatiewe stres in
soogdierselle opgeteken, hoewel die meganisme agter hierdie werking nog onbekend is. Daar
word dus vermoed dat, gegewe dat soortgelyke effekte vir karnitien in soogdierselle getoon kan
word as wat in gis waargeneem is, dit voordelig sou wees om gis as ‘n modelsisteem vir die
studie van die molekulêre veranderinge wat deur karnitien geïnduseer word, te gebruik. In die
lig hiervan is die effekte van karnitien op giftigheid wat deur oksidatiewe stres in
soogdiersenuselle geïnduseer is, vergelyk met dít wat in gis waargeneem is. Om hierdie rede is
die 3-[4,5-dimetieltiasool-2-iel]-2,5-difeniel tetrasoliumbromied (MTT) essaiëring, ‘n meting van
die verminderende kapasiteit van selle, gebruik. Geen effekte vir karnitien is egter met die MTT
essaiëring in kombinasie met óf ditiotreitol óf parakwat waargeneem nie.
|
23 |
Carnitine in yeast and filamentous fungiSwiegers, Jan Hendrik 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: In the yeast Saccharomyces cerevtstee, two biochemical pathways ensure that
activated cytoplasmic or peroxisomal acetyl-groups are made available for
mitochondrial energy production when the cells utilise non-fermentable carbon
sources. The first pathway is the glyoxylate cycle, where two activated acetyl-groups
are incorporated into each cycle, which releases a C4 intermediate. This intermediate
is then transported to the mitochondria where it can enter the tricarboxylic acid cycle.
The second pathway is the carnitine shuttle. Activated acetyl-groups react with
carnitine to form acetylcarnitine, which is then transported to the mitochondria where
the acetyl group is transferred.
In this study it was shown that the deletion of the glyoxylate cycle specific citrate
synthase, encoded by CIT2, results in a strain that is dependent on carnitine for
growth on non-fermentable carbon sources. Using a /::"cit2 strain, mutants affected in
carnitine-dependent metabolic activities were generated. Complementation of the
mutants with a genomic library resulted in the identification of four genes involved in
the carnitine shuttle. These include: (i) the mitochondrial and peroxisomal carnitine
acetyltransferase, encoded by CAT2; (ii) the outer-mitochondrial carnitine
acetyltransferase, encoded by YA T1; (iii) the mitochondrial carnitine translocase,
encoded by CRC1; and (iv) a newly identified carnitine acetyltransferase, encoded by
YAT2. All three carnitine acetyltransferases are essential in a carnitine-dependent
strain.
The dependence on exogenous carnitine of the /::"cit2 strain when grown on nonfermentable
carbon sources suggested that S. cerevisiae does not biosynthesise
carnitine. Measurements using electrospray mass spectrometry confirmed this
hypothesis. As a result an investigation was initiated into carnitine biosynthesis in
order to genetically engineer a S. cerevisiae strain that could endogenously
biosynthesise carnitine.
The filamentous fungus, Neurospora crassa, was one of the first organisms used
in the seventies to identify the precursor and intermediates of carnitine biosynthesis.
However, it was only about twenty years later that the first genes encoding these
enzymes where characterised. Carnitine biosynthesis is a four-step process, which
starts with trimethyllysine as precursor. Trimethyllysine is converted to hydroxytrimethyllysine
by the enzyme trimethyllysine hydroxylase (TMLH). Hydroxytrimethyllysine
is cleaved to trimethylamino-butyraldehyde by the
hydroxytrimethyllysine aldolase (HTMLA) releasing glycine. Trimethylaminobutyraldehyde
is dehydrogenated to trimethylamino-butyrate (y-butyrobetaine) by
trimethylamino-butyraldehyde dehydrogenase (TMABA-DH). In the last step, ybutyrobetaine
is converted to t-carnltine by y-butyrobetaine hydroxylase (BBH).
The N. crassa TMLH homologue was identified in the genome database based
on the protein sequence homology of the human TMLH. Due to the high amount of introns predicted for this gene, the cDNA was cloned and subjected to sequencing,
which then revealed that the gene indeed had seven introns. Functional expression
of the gene in S. cerevisiae and subsequent enzymatic analysis revealed that the
gene coded for a TMLH. It was therefore named cbs-1 for "carnitine biosynthesis
gene no. 1JJ. Most of the kinetic parameters were similar to that of the human TMLH
enzyme. Following this, a genomic copy of the N. crassa BBH homologue was cloned
and functionally expressed in S. cerevisiae. Biochemical analysis revealed that the
BBH enzyme could biosynthesise L-carnitine from y-butyrobetaine and the gene was
named cbs-2. In addition, the gene could rescue the growth defect of the carnitinedependent
Scii? strain on non-fermentable carbon sources when y-butyrobetaine was
present. This is the first report of an endogenously carnitine biosynthesising strain of
S. cerevisiae.
The cloning of the remaining two biosynthesis genes presents particular
challenges. To date, the HTMLA has not been characterised on the molecular level
making the homology-based identification of this protein in N. crassa impossible.
Although the TMABA-DH has been characterised molecularly, the protein sequence
is conserved for its function as a dehydrogenase and not conserved for its function in
carnitine biosynthesis, as in the case of TMLH and BBH. The reason for this is
probably due to the fact that the enzyme is involved in other metabolic processes.
The use of N. crassa carnitine biosynthesis mutants would probably be one way in
which to overcome these obstacles.
The !1cit2 mutant proved useful in studying carnitine related metabolism. We
therefore searched for suppressors of !1cit2, which resulted in the cloning of RAS2. In
S. cerevisiae, two genes encode Ras proteins, RAS1 and RAS2. GTP-bound Ras
proteins activate adenylate cyclase, Cyr1 p, which results in elevated cAMP levels.
The cAMP molecules bind to the regulatory subunit of the cAMP-dependent kinase
(PKA), Bcy1 p, thereby releasing the catalytic subunits Tpk1 p, Tpk2p and Tpk3p. The
catalytic subunits phosphorylate a variety of regulators and enzymes involved in
metabolism. Overexpression of RAS2 could suppress the growth defect of the Sclt?
mutant on glycerol. In general, overexpression of RAS2 enhanced the proliferation of
wild-type cells grown on glycerol. However, the enhancement of proliferation was
much better for the !1cit2 strain grown on glycerol. In this respect, the retrograde
response may play a role. Overexpression of RAS2 resulted in elevated levels of
intracellular citrate and citrate synthase activity. It therefore appears that the
suppression of !1cit2 by RAS2 overexpression is a result of the general upregulation
of the respiratory capacity and possible leakage of citrate and/or citrate synthase
from the mitochondria. The phenotype of RAS2 overexpression contrasts with the
hyperactive RAS2val19 allele, which causes a growth defect on glycerol. However,
both RAS2 overexpression and RAS2val19activate the cAMP/PKA pathway, but the
RAS2val19dependent activation is more severe. Finally, this study implicated the
Ras/cAMP/PKA pathway in the proliferation effect on glycerol by showing that in a
Mpk1 strain, the growth effect is blocked. However, the enhanced proliferation was still observed in the Mpk2 and Mpk3 strains when RAS2 was overexpressed.
Therefore, it seems that Tpk1 p plays an important role in growth on non-fermentable
carbon sources, a notion that is supported by the literature. / AFRIKAANSE OPSOMMING: In die gis Saccharomyces cerevtstee, is daar twee metaboliese weë waarmee
geaktiveerde asetielgroepe na die mitochondrium vervoer kan word wanneer die sel
op nie-fermenteerbare koolstofbronne groei. Die een weg is die glioksilaatsiklus,
waar die geaktiveerde asetielgroepe geïnkorporeer word in die siklus en dan
vrygestel word as Ca-intermediêre. Hierdie intermediêre word dan na die
mitochondrium vervoer waar dit in die trikarboksielsuursiklus geïnkorporeer word. Die
ander weg is die karnitiensiklus, waar geaktiveerde asetielgroepe met karnitien
reageer om asetielkarnitien te vorm wat dan na die mitochondrium vervoer word waar
dit die asetielgroep weer vrygestel.
Hierdie studie het getoon dat die delesie van die glioksilaatsiklus spesifieke
sitraatsintetase, gekodeer deur CIT2, die gisras afhanklik maak van karnitien vir groei
op nie-fermenteerbare koolstofbronne. Deur gebruik te maak van 'n ócit2 gisras, kon
mutante, wat geaffekteer is in karnitien-verwante metaboliese aktiwiteite, gegenereer
word. Komplementering van die mutante met 'n genomiese biblioteek het gelei tot die
identifisering van vier gene betrokke by die karnitiensiklus. Hierdie gene sluit in: (i)
die mitochondriale en die peroksisomale karnitienasetieltransferase, gekodeer deur
CAT2; (ii) die buite-mitochondriale karnitienasetieltransferase, gekodeer deur YAT1;
(iii) die mitochondriale karnitientranslokase, gekodeer deur CRC1; en (iv) 'n nuutgeïdentifiseerde
karnitienasetieltransferase, gekodeer deur YAT2. Daar benewens, is
ook gewys dat al drie karnitienasetieltransferases noodsaaklik is in 'n karriltienafhanklike
gisras.
Die afhanklikheid van eksogene karnitien van die ócit2 gisras, wanneer dit
gegroei word op nie-fermenteerbare koolstofbronne, was aanduidend dat
S. cerevisiae nie karnitien kan biosintetiseer nie. Metings deur middel van
elektronsproeimassaspektrometrie het hierdie veronderstelling bevestig. Gevolglik is
'n ondersoek deur ons geïnisieer in die veld van karnitienbiosintese om 'n
S. cerevisiae gisras geneties te manipuleer om karnitien sodoende endogenies te
biosintetiseer.
Die filamentagtige fungus, Neurospora crassa, was een van die eerste
organismes wat in die sewentiger jare gebruik is om die voorloper en intermediêre
van karnitienbiosintese te identifiseer. Dit was egter eers sowat twintig jaar later dat
die eerste gene wat vir hierdie ensieme kodeer, gekarakteriseer is.
Karnitienbiosintese is 'n vierstap-proses wat met trirnetlellisten as voorloper begin.
Trimetiellisien word omgeskakel na hidroksi-trimetiellisien deur die ensiem
trimetiellisienhidroksilase (TMLH). Hidroksietrimetlelllsien word dan gesplits om
trimetielaminobuteraldehied te vorm deur die werking van die
hidroksitrimetiellisienaldolase (HTMLA) met die gevolglike vrystelling van glisien.
Trimetielaminobuteraldehied word dan na trimetielaminobuteraat (y-butirobeteïen)
deur trimetielaminobuteraldehied dehidrogenase (TMABA-DH) gedehidrogeneer. In die laaste stap word y-butirobeteïen deur middel van die y-butirobeteïen hidroksilase
(BBH) na L-karnitien omgeskakel.
Op grond van die proteïenvolgordehomologie in die genoomdatabasis tussen die
menslike TMLH en N. crassa se TMLH is laasgenoemde geïdentifiseer. As gevolg
van die groot getal introns wat vir hierdie geen voorspel is, is die cDNA-weergawe
daarvan gekloneer en aan volgordebepaling onderwerp. Dit het getoon dat die geen
inderdaad sewe introns bevat. Funksionele uitdrukking van die geen in S. cerevisiae
en ensiematiese analise het getoon dat die geen vir 'n TMLH kodeer en is gevolglik
cbs-1 genoem; dit staan vir "karnitien biosintese geen no. 1tt. Meeste van die
kinetiese parameters was ook soortgelyk aan die van die menslike TMLH-ensiem.
Hierna is 'n genomiese kopie van N. crassa se BBH-homoloog gekloneer en
funksioneel in S. cerevisiae uitgedruk. Biochemiese analise het getoon dat die
uitgedrukte BBH-ensiem L-karnitien vanaf y-butirobeteïen kan biosintetiseer en die
geen is cbs-2 genoem. Daar benewens kon die geen die groeidefek van die
karnitien-afhanklike tlcit2-gisras ophef wanneer dit op nie-fermenteerbare
koolstofbronne in die teenwoordigheid van y-butirobeteïen aangekweek is. Hierdie is
die eerste verslag oor 'n endogeniese karnitien-biosintetiserende ras van
S. cerevisiae.
Die klonering van die oorblywende twee karnitienbiosintetiserende gene het
sekere uitdagings. Tot op datum, is die HTMLA nog nie tot op genetiese vlak
gekarakteriseer nie, wat dan die homologie-gebaseerde identifikasie van hierdie
proteïen in N. crassa onmoontlik maak. Alhoewel die TMABA-DH geneties
gekarakteriseer is, is die proteïenvolgorde ten opsigte van sy funksie as 'n
dehidrogenase gekonserveer, maar nie vir sy funksie in karnitienbiosintese soos in
die geval van TMLH en BBH nie. Die rede hiervoor is moontlik omdat die ensiem ook
in ander metaboliese prosesse betrokke is. Die gebruik van N. crassa
karnitienmutante sal moontlik een manier wees om hierdie probleme te oorkom.
Die tlcit2-mutant het handig te pas gekom vir die bestudering van karnitienverwante
metabolisme. Dus is daar vir onderdrukkers van die tlcit2-mutant gesoek
wat gelei het tot die klonering van die RAS2-geen. In S. cere visiae , kodeer twee
gene vir Ras-proteïene, RAS1 en RAS2. GTP-gebonde Ras-proteïene aktiveer
adenilaatsiklase, Cyr1 p, wat verhoogde intrasellulêre cAMP-vlakke tot gevolg het.
Die cAMP bind aan die regulatoriese subeenheid van die cAMP-proteïenkinase
(PKA), Bcy1 p, en daardeur word die katalitiese subeenhede, Tpk1 p, Tpk2p en
Tpk3p, vrygestel. Die katalitiese subeenheid fosforileer 'n verskeidenheid van
reguleerders en ensieme betrokke by metabolisme. Ooruitdrukking van RAS2 het die
groeidefek van die tlcit2-mutant op gliserolonderdruk. Oor die algemeen, verbeter
die ooruitdrukking van RAS2 die proliferasie van die wildetipe op gliserol bevattende
media. Alhoewel, die verbetering van proliferasie was baie meer opmerklik in die
tlcit2-gisras. In hierdie verband, speel die gedegenereerde response dalk 'n rol.
Ooruitdrukking van RAS2 het verhoogde intrasellulêre vlakke van sitraat- en
sitraatsintetase-aktiwiteit tot gevolg gehad. Dit wou dus voorkom asof die onderdrukking van die ócit2-groeidefek deur RAS2 se ooruitdrukking die gevolg was
van algemene opreguiering van respiratoriese kapasiteit en die lekkasie van sitraat
en/of sitraatsintetase uit die mitochondria. Die fenotipe van RAS2 ooruitdrukking
kontrasteer die hiperaktiewe RAS2va
/
19 alleel, wat 'n groeidefek op gliserol media
veroorsaak. Alhoewel beide RAS2-00ruitdrukking en RAS2va
/
19 die cAMP/PKA-weg
aktiveer, is gevind dat die RAS2va/19-afhanklike aktivering strenger is. Ten slotte, die
cAMP/PKA-weg is in die proliferasie effek op gliserol media geïmpliseer deur te wys
dat in 'n Mpk1-gisras, die groeieffek geblokkeer is. Alhoewel, die verbeterde
proliferasie is steeds waargeneem in die Mpk2-en Mpk3-gisrasse toe die RAS2-geen
ooruitgedruk is. Dus, dit wil voorkom asof Tpk1 p 'n belangrike rol in die groei van
gisselle op nie-fermenteerbare koolstofbronne speel; 'n veronderstelling wat deur die
literatuur ondersteun word.
|
24 |
Inflammation affects ontogeny of L-carnitine hmeostasis mechanisms in the developing rat2013 December 1900 (has links)
ABSTRACT
This thesis research involved investigations into the effects of inflammation on maturation of L-carnitine homeostasis in developing rat neonates. The overall hypothesis was an inflammatory stimulus will alter the ontogeny of L-carnitine homeostasis pathways and this depends upon when the inflammatory stimulus occurs in postnatal development. The objective was to investigate the potential effect of inflammation on carnitine transporter expression in different age groups of neonates and evaluation of effect of inflammation on ontogeny and activity of enzymes involved in carnitine biosynthesis and whether this differs depending upon when in postnatal development the inflammatory stimulus occurs.
Rat pups at postnatal day 3, 7, and 14 received an intraperitoneal injection of lipopolysaccharide (LPS) at a dose known to cause a febrile reaction in rat neonates. L-Carnitine homeostasis pathways underwent significant ontogenesis during postnatal development in the rat. LPS administration caused a significant decrease in free L-carnitine levels in serum and heart tissue and a decrease in mRNA expression levels of the high affinity carnitine transporter, Octn2, in kidney, heart and intestine at all postnatal ages. Furthermore, significant decreases in mRNA expression levels of key enzymes involved in carnitine biosynthesis was observed, while an increase in carnitine palmitoyltransferase mRNA levels were observed at all postnatal ages. Reductions in butyrobetaine hydroxylase mRNA expression were paralleled by reductions in enzyme activity only at postnatal day 3 and 7. Heart creatine phosphate levels were deceased significantly in LPS treated groups in all postnatal ages; however, ADP and ATP levels were unaffected. Collectively, this research provided experimental evidence for a significant effect of inflammation on changes in L-carnitine homeostasis maturation in early neonatal stages. The maturation of physiological processes may be altered by external factors in early postnatal life.
|
25 |
Bioactive nutrients for improved metabolic function of dairy cattleOlagaray, Katie E. January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Barry J. Bradford / Dairy cows undergo many homeorhetic adaptations during the transition to lactation. Although many of the physiological processes - including increased lipolysis and postpartum inflammation - are adaptive, exaggerated responses can contribute to metabolic disease and reduced milk production. L-carnitine has been shown to increase hepatic oxidation of fatty acids and reduce hepatic lipid accumulation in early lactation cows; however, L-carnitine is degraded in the rumen. An experiment using 4 ruminally-cannulated Holstein heifers in a split plot design demonstrated that the relative bioavailability of L-carnitine was greater when delivered abomasally than ruminally. There was a dose × route interaction and a route effect for increases in plasma carnitine above baseline, with increases above baseline being greater across all dose levels (1, 3, and 6 g L-carnitine/d) when infused abomasally compared to ruminally. A second experiment used 56 lactating Holstein cows in a randomized complete block design to evaluate 2 rumen-protected products (40COAT and 60COAT) compared to crystalline L-carnitine at doses targeting 3 and 6 g/d carnitine. Although crystalline and 40COAT were effective in linearly increasing carnitine concentrations, only subtle responses were seen for the 60COAT, which were less than that for crystalline carnitine in plasma, milk, and urine. Ineffectiveness of rumen-protected products to increase carnitine concentrations beyond crystalline may have been due to over-encapsulation that hindered liberation of the carnitine and its absorption in the small intestine. Although L-carnitine has the potential to reduce postpartum hepatic lipidosis, effective rumen protection of L-carnitine while maintaining intestinal availability needs further investigation. Plant polyphenols have anti-inflammatory properties and when administered during the transition period, have been shown to increase milk production. An experiment used 122 multiparous Holstein cows in a randomized block design to determine the effect of short term (5-d; SBE5) and long term (60-d; SBE60) administration of Scutellaria baicalensis extract (SBE)on whole-lactation milk yield, 120-d milk component yield, and early lactation milk markers of inflammation. Whole-lactation milk yield was increased for SBE60 compared to control, but was not different for SBE5 compared to control. Greater total pellet intake, milk lactose yield, and reduced SCC during wk 1-9 for SBE60 compared to control, all could have contributed to the observed sustained increase in milk yield. Milk production parameters were not different for SBE5 compared to control. No treatment effects were observed for BCS or milk markers of inflammation (haptoglobin) and metabolic function (β-hydroxybutyrate). Overall, long term administration of S. baicalensis effectively increased milk production, however the mechanism by which this was achieved is unknown. Although routes of administration to effectively achieve their physiological responses were different between L-carnitine (abomasal delivery) and SBE (feeding), both bioactive nutrients can improve the metabolic function of early lactation dairy cows.
|
26 |
Hodnocení vlivu vybraných nových antiretrovirálních léčiv na transport karnitinu v placentě / Study of the effect of novel antiretroviral drugs on carnitine transport in the placentaMarková, Eliška January 2019 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Eliška Marková Suprevisor: doc. PharmDr. Martina Čečková, Ph.D. Title of diploma thesis: Study of the effect of novel antiretroviral drugs on carnitine transport in the placenta Nowadays, the antiretroviral treatment of HIV-positive pregnant women is the standard approach for restriction of transmission of HIV infection from mother to the fetus. In spite of necessity of this pharmacotherapy, it is important to know its safety and risks. For the correct fetal development and function of placenta it is (besides others) essential to ensure the optimal supply of L-carnitine, the key factor for oxidation of fatty acids from mother's blood to the placenta and fetal blood circulation. The deficiency of L-carnitine generally leads to significant metabolic changes in the cells and in it usually demonstrated with cardiomyopathies and myopaties. Published studies indicate higher incidence of cardiovascular diseases and cardiomyopathies in children born to mothers treated with antiretroviral therapy during pregnancy. Optimal transport of carnitine into the placental cells, is ensured due to the presence of functional transport protein OCTN2 in the apical membrane of trophoblast. The aim of this study was...
|
27 |
Lipid metabolism in sheep : a study of the metabolism of ketone bodies and carnitine in various tissues of the sheepKoundakjian, Patricia January 1974 (has links)
v, 189 leaves ; 26 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.1974) from the Dept. of Agricultural Biochemistry and Soil Science, University of Adelaide
|
28 |
Quantitative fibroblast acylcarnitine profiling in the diagnostic and prognostic assessment of mitochondrial fatty acid [beta]-oxidation disordersSim, Keow Giak. January 2002 (has links)
Thesis (M. Sc. Med.)--University of Sydney, 2003. / Title from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Master of Science in Medicine to the Dept. of Paediatrics and Child Health, Faculty of Medicine. Degree awarded 2003; thesis submitted 2002. Includes bibliography. Also available in print form.
|
29 |
Carnitine status in adult protein-calorie malnutrition /Nusiri Lerdvuthisopon, January 1978 (has links) (PDF)
Thesis (M.A.) -- Mahidol University, 1978.
|
30 |
Structure-function studies of the carnitine/choline acyltransferase familyPedersen, Brenda Dawn. January 2004 (has links)
Thesis (Ph.D.)--University of Florida, 2004. / Typescript. Title from title page of source document. Document formatted into pages; contains 112 pages. Includes Vita. Includes bibliographical references.
|
Page generated in 0.0547 seconds