Spelling suggestions: "subject:"carotenoids - bsynthesis."" "subject:"carotenoids - csynthesis.""
1 |
Transgenic chlamydomonas reinhardtii as an experimental system to study the regulation of carotenoid biosynthesis in green microalgaeWong, Ka-ho, 王家豪 January 2006 (has links)
published_or_final_version / abstract / Botany / Master / Master of Philosophy
|
2 |
Roles of OsCCD1 in carotenoid catabolism in rice seeds.January 2011 (has links)
Sze, Wing Ho Angel. / "December 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 90-112). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Acknowledgements --- p.iii / Abstract --- p.iv / 摘要 --- p.vi / Table of Contents --- p.viii / List of Tables --- p.xii / List of Figures --- p.xiii / List of Abbreviations --- p.xv / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter Chapter 2. --- Literature Review / Chapter 2.1. --- Carotenoids in plants --- p.5 / Chapter 2.2 --- Carotenoid biosynthesis in plants --- p.7 / Chapter 2.3. --- Carotenoids in animals --- p.11 / Chapter 2.4. --- Vitamin A deficiency (VAD) --- p.13 / Chapter 2.5. --- Recommended requirement of vitamin A --- p.15 / Chapter 2.6. --- Bioavailability and bioconversion of dietary carotenoids --- p.17 / Chapter 2.7. --- Efforts to improve carotenoid contents in food crops --- p.19 / Chapter 2.8. --- Carotenoid catabolism --- p.20 / Chapter 2.9. --- Carotenoid cleavage dioxygenase (CCD) --- p.21 / Chapter 2.10. --- Carotenoid-derived phytohormones --- p.24 / Chapter 2.11. --- "CCD and carotenoid-derived colors, aromas and flavors" --- p.27 / Chapter Chapter 3. --- Hypothesis and Objectives --- p.35 / Chapter Chapter 4. --- Materials and methods / Chapter 4.1. --- General cloning and sequencing --- p.36 / Chapter 4.2. --- Extraction of RNA and DNase treatment --- p.36 / Chapter 4.3. --- Reverse transcription --- p.37 / Chapter 4.4. --- Real-time quantitative RT-PCR --- p.39 / Chapter 4.5. --- Cloning of OsCCD1 cDNA --- p.40 / Chapter 4.6. --- Bacterial in vivo assay of OsCCD 1 activity --- p.41 / Chapter 4.7. --- Construction of OsCCD1 RNAi constructs --- p.42 / Chapter 4.8. --- "Construction of ""Super-Golden"" rice constructs" --- p.46 / Chapter 4.8.1. --- "Construction of ""GluC-Y1-Nos"" cassette" --- p.46 / Chapter 4.8.2. --- "Construction of ""Gt1-TCN"" cassette" --- p.46 / Chapter 4.8.3. --- "Construction of""pGT-PCC""" --- p.47 / Chapter 4.8.4. --- "Construction of ""pGYGC""" --- p.47 / Chapter 4.9. --- Rice transformation --- p.54 / Chapter 4.10. --- Detection of transgene --- p.57 / Chapter 4.10.1. --- Southern blot --- p.57 / Chapter 4.10.2. --- HPLC analysis of carotenoids in seeds --- p.59 / Chapter Chapter 5. --- Results / Chapter 5.1. --- Expression profiles of carotenogenic genes in rice endosperms --- p.62 / Chapter 5.2. --- Expression of CCDs in developing rice seeds --- p.64 / Chapter 5.3. --- Features of OsCCD1 --- p.68 / Chapter 5.4. --- Characterization of OsCCD1-knock down transgenic rice --- p.72 / Chapter 5.5. --- "Construction of ""Super-Golden"" rice" --- p.78 / Chapter 5.6. --- Phenotypic characterization of PCC transgenic rice --- p.79 / Chapter 5.7. --- HPLC analysis on seed carotenoid content --- p.80 / Chapter Chapter 6. --- Discussion --- p.82 / Chapter Chapter 7. --- Conclusion --- p.89 / References --- p.90
|
3 |
Isolation and characterisation of carotenoid biosynthetic genes from Vitis viniferaTaylor, Kerry Lyn 03 1900 (has links)
Thesis (PhD (Genetics. Plant Biotechnology))--University of Stellenbosch, 2007. / Plants are constantly exposed to adverse environmental conditions including variations in
light intensity and the availability of water resources. These abiotic factors are expected to
worsen as the changing global climate places additional daily and seasonal demands on
plant growth and productivity. As plants are incapable of avoiding stress they have
developed a number of mechanisms to manage and adapt to the unfavourable conditions.
Carotenoids represent one of these mechanisms; with the xanthophylls (oxygenated
carotenes) playing an essential role in photoprotection following exposure to excess light
energy. They are also precursors to the plant hormone abscisic acid (ABA) which plays a
known role in stomatal regulation and thus drought tolerance. Carotenoids have been
identified as potential targets for genetic manipulation to meet the existing nutritional
demands (particularly vitamin A) and to enable plants to survive the climatic variations
predicted. Thorough investigations into the regulation and functioning of each carotenoid
biosynthetic gene in vivo as well as the roles of their encoded proteins are prerequisite.
Within the Grapevine Biotechnology Programme, a number of isoprenoid biosynthetic genes
have been isolated from Vitis vinifera L. cv. Pinotage. From this vast resource two genes
were chosen; namely a lycopene b-cyclase (b-LCY) and 9-cis epoxycarotenoid dioxygenase
(NCED) for detailed in planta analyses to address knowledge gaps in our current
understanding of carotenoid biosynthesis in general, its regulation and the roles of the two
target genes in these processes. Currently, the role of b-LCY within the chloroplasts is not
well known. Although the relationship between NCED overexpression, ABA levels, reduced
stomatal conductance and increased tolerance to water stress has been well-established,
comprehensive physiological analysis of the resulting mutants during conditions of both
water availability and shortage is not well documented. To assess their in planta role,
functional copies of both genes were isolated from Vitis vinifera (cv. Pinotage), characterised
and independently transformed into the genome of the model plant, Arabidopsis thaliana, in
the sense orientation under a constitutive promoter.
In order to investigate these pertinent scientific questions and thus to evaluate the
physiological role of each gene in vivo, a number of technologies were developed and/or
adopted. These included a high-performance liquid chromatography method for profiling the
major plant pigments in leaf tissue, a combination vapour phase extraction and electron
impact-gas chromatography/mass spectrometry method for the phytohormone profiling as
well as various physiological analyses including the use of chlorophyll a fluorescence to
assess the photosynthetic and non-photochemical quenching (NPQ) capacities of the plants.
Overexpression of grapevine b-LCY (Vvb-LCY) decreased lutein levels due to preferential
partitioning of lycopene into the b-branch. This decrease was not met by an increase in
either b-carotene or the xanthophyll cycle pigments implying that Vvb-LCY is not able to
regulate the flow of carbon through the pathway and provides additional evidence to the
fluidity of this pathway whereby pigment levels are continually balanced. The decreased
lutein levels observed under low light (LL) did not compromise the plants’ ability to induce
and maintain NPQ over a wide actinic light range. Vvb-LCY transgenics also had lower neoxanthin levels (and specifically the cis-isomer) under both LL and following exposure to
high light (HL), which could be correlated to an increase in malondialdehyde. Although not
corroborated, a novel and unexpected finding was an essential role for neoxanthin, and
potentially lutein, in preventing or at least reducing lipid peroxidation under HL stress. The
lower neoxanthin amounts may be due to silencing of the Arabidopsis b-LCY by the
Vvb-LCY, as the former may function as a NSY paralog as NSY is not encoded for in the
Arabidopsis genome. Clearly, this study has confirmed that Vvb-LCY partitions the carbon
flux between the a- and b-branches, however, the catalytic action of this enzyme is
dependent on the amount of substrate available and is thus not a regulatory step directing
the flux within the pathway. Enzyme kinetic and detailed transcriptional analyses would
confirm the above findings.
Overexpression of grapevine NCED1 (VvNCED1) increased ABA concentrations, delayed
seed germination and resulted in a slight to severe reduction in the overall plant growth rate.
NCED cleaves the 9-cis xanthophylls regulating ABA synthesis. However, contrary to
expectations, constitutive levels of this regulatory enzyme did not deplete the total and
individual chlorophylls and carotenoids in well-watered plants. Instead the VvNCED1
transgenics simply exhibited a lower chloroplastic pigment complement with no concomitant
effects on their photosynthetic capacity. Of particular interest, well-watered plants
overexpressing the VvNCED1 gene had an increased NPQ capacity of which the thermal
energy dissipation component (qE) was the most significant. It has been speculated that this
NPQ is associated with the phenotype conferred by VvNCED1 overexpression and occurs
independently of the xanthophyll cycle, and specifically zeaxanthin. This study confirmed
that VvNCED1 functions during drought tolerance via ABA regulation of stomatal
conductance. A detailed study was done to understand the plants’ response during water
deficit. Typically, decreases in total and individual carotenoids and the maximum efficiency
of photochemistry (Fv/Fm) as well as the relative water and soil moisture content were
recorded. No changes were recorded in salicylic acid (SA) levels, while indole acetic acid
(IAA) was positively correlated to ABA or vice versa. In contrast, the physiology of VvNCED1
overexpressing lines was largely unaffected, indicating that a reduced stomatal conductance
protects the plants against water stress.
This study has resulted in the isolation and characterisation of a carotenoid biosynthetic gene
(b-LCY) and an abscisic acid synthesising gene (NCED). Significant advancements in our
existing knowledge of the in planta role of both genes have been achieved. We have also
reaffirmed that strict regulatory control and fluidity exists within the carotenoid biosynthetic
pathway whereby individual pigment levels are constantly brought back into balance despite
constitutive expression of one of the pathway gene members. These analyses provide
valuable baseline information about individual genes which can be extended upon with other
omic technologies in order to comprehend the full complexity involved in carotenogenesis.
|
4 |
Molecular analyses of candidate carotenoid biosynthetic genes in Vitis vinifera L.Young, Philip Richard, 1973- 03 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Plants cannot avoid stress and must therefore be capable of rapidly responding to
extreme environmental changes. An inability to control and regulate the
photosynthetic process during stress conditions will lead to the formation of highly
reactive oxygen species that concomitantly causes photo-oxidative damage to the
pigments and proteins of the photosynthetic apparatus. Since light is the primary
source of energy for the photosynthetic process, it is clear that plants are
continuously required to balance the light energy absorbed for the photochemical
reactions against photoprotection in a dynamic way in order to survive. Carotenoids
are precursors of abscisic acid, but more importantly structural components of the
photosynthetic apparatus. During photosynthesis carotenoids function as accessory
light-harvesting pigments, and also fulfil a photoprotective function by quenching the
reactive molecules formed during conditions that saturate the photosynthetic process.
Due to the importance of carotenoids to plant fitness and human health (as
Vitamin A precursors) this study has attempted to isolate and characterise genes that
are directly, or indirectly involved in carotenoid biosynthesis in Vitis vinifera. In total
eleven full-Iength- and eight partial genes have been isolated, cloned and
sequenced. These genes can be grouped into the following pathways: (i) the 1-
deoxy-D-xylulose 5-phosphate (DOXP)/2-C-methyl-D-erythritol 4-phosphate (MEP)
pathway (i.e. the plastidic isopentenyl diphosphate biosynthetic pathway); (ii) the
mevalonate pathway (i.e. the cytosolic/mitochondrial IPP biosynthetic pathway); (iii)
the carotenoid biosynthetic pathway; (iv) the abscisic acid biosynthetic pathway (as a
degradation product of carotenoids); and general isoprenoid biosynthetic pathways
(as precursors of carotenoids).
The full-length genes (i.e. from the putative ATG to the STOP codon) of DOXP
synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), IPP
isomerase (IPI), 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), phytoene
synthase (PSY), Iycopene ~-cyclase (LBCY), ~-carotene hydroxylase (BCH),
zeaxanthin epoxidase (lEP), 9-cis-epoxy carotenoid dioxygenase (NCED), farnesyl
diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) have
been isolated from cDNA. In addition, the full-length genomic copy and putative
promoters of DXS, PSY, LBCY, BCH, NCED and lEP have also been isolated from
genomic DNA by the construction and screening of sub-genomic libraries.
Alignments of the genomic copies of these genes to the corresponding cDNA
sequences have provided useful information regarding the genomic organisation of
these genes, including the intron-exon junction sites in V. vinifera. The copy number
of the DXS, PSY, LBCY, BCH, NCED and lEP encoding genes in the Vitis genome
have been determined. DXS, PSY, BCH and lEP are single copy genes, whereas
LBCY and NCED have two and three copies, respectively.
The transcriptional activity of the putative promoters of six of the isolated genes
(i.e. DXS, PSY, LBCY, BCH, lEP and NCED) were tested with a transient reporter
gene assay. None of the putative promoters tested showed any transcriptional
activity of the reporter gene. The transcription of these genes, has however been
shown using northern blot analysis and/or RT-PCR. Preliminary expression profiles
for PSY, LBCY, BCH, and lEP were determined in different plant organs and the
expression of these genes was generally higher in photosynthetically active tissues.
The expression of these genes following different treatments (abscisic acid, NaCI and
wounding) was also assayed. The functionality of five of the isolated full-length genes (IPI, GGPS, PSY, LBCY and BCH) has been shown in a bacterial colour
complementation assay.
In silica analysis of the predicted protein sequences of all eleven isolated
genes revealed that they are conserved and share a high degree of homology to the
corresponding proteins in other plant species. The sequences were further analysed
for conserved domains in the protein sequences, and these proteins typically
demonstrated similar domain profiles to homologues in other species (plant, bacteria
and algae). The predicted protein sequences were further analysed for transit
peptides, the presence of which would provide evidence for the sub-cellular
localisation of the mature peptides. Since these genes are involved in biosynthetic
pathways that are active in discrete organelles, the sub-cellular localisation of most of
these proteins is known. The carotenoid biosynthetic genes (PSY, LBCY, BCH and
ZEP), the abscisic acid biosynthetic gene, NCED, as well as the DOXP/MEP pathway
genes (DXS, lytB and IPI) were all localised to the chloroplast. The mevalonate
pathway gene, HMGS, was localised to both the cytosol and the mitochondria, and
the general isoprenoid precursor genes, FPS and GGPS, were localised to the
cytosol and the chloroplast, respectively. All these results are in agreement with the
localisation of the respective pathways.
In order to increase our understanding of carotenoid biosynthesis and functions
in plants, we constitutively overexpressed one of the isolated genes (BCH) in the
model plant, Nicotiana tabacum. Plants expressing the BCH gene in the sense
orientation maintained a healthy photosynthetic rate under stress conditions that
typically caused photoinhibition and photodamage in the untransformed control
plants. This result was inferred using chlorophyll fluorescence and confirmed using
CO2 assimilation rates and stomatal conductance. Chlorophyll fluorescence
measurements indicated that the photo protective non-photochemical quenching
ability of the BCH-expressing plants increased, enabling the plants to maintain
photosynthesis under conditions that elicited a stress response in the untransformed
control plants. An integral photosynthetic protein component, the D1 protein, was
specifically protected by the additional zeaxanthin in the BCH sense plants. Plants
expressing an antisense BCH proved the converse, i.e. lower levels of BCH resulted
in decreased zeaxanthin levels and made the transgenic plants more susceptible to
high-light induced stress. These results have shown the crucial role of carotenoids
(specifically the xanthophylls) in the photoprotective mechanism in plants. The
increased photoprotection provided by the BCH expressing plants suggests that the
scenario in plants is not optimal and can be improved. Any improvement in the
photoprotective ability of a plant will affect both the fitness and productivity of the
plant as a whole and will therefore find application in a number of crop plants on a
global scale. This study has resulted in the successful isolation and characterisation
of genes involved in the direct, or indirect, carotenoid biosynthetic pathways. The
further study and manipulation of these genes in model plants will provide useful
insights into the physiological role of specific carotenoids in photosynthesis and in
plants as a whole. / AFRIKAANSE OPSOMMING: Plante het nie die vermoë om stres te ontwyk nie en moet dus vinnig op veranderinge
in hulomgewingstoestande kan reageer. Indien hulle nie die fotosinteseproses kan
kontroleer en reguleer tydens streskondisies nie, sal dit tot die vorming van hoogs
reaktiewe suurstofspesies lei, wat beide die pigmente en proteiene van die
fotosintetiese apparaat sal beskadig. Lig is die primêre energiebron vir fotosintese
en daarom is dit noodsaaklik dat plante deurgaans 'n dinamiese balans tussen
fotosintese en fotobeskerming moet handhaaf. Karotenoiëde is voorlopers vir die
vorming van absisiensuur, maar meer belangrik vir die plant, ook integrale
komponente van die fotosintetiese apparaat. Tydens fotosintese word karotenoiëde
vir die opneem van lig benodig, terwyl dit ook die fotosintetiese apparaat beskerm
wanneer lig 'n versadigingspunt bereik vir fotosintese.
Weens die belang van karotenoiëde vir plant- en menslike gesondheid (as
Vitamiene A voorlopers), het hierdie studie beoog om gene te isoleer en
karakteriseer wat direk of indirek 'n rol in karoteenbiosintese in Vitis vinifera speel.
Elf vollengte- en agt gedeeltelike gene is geïsoleer, gekloneer, en gekarakteriseer.
Hierdie gene kan in die volgende biosintetiese paaie gegroepeer word: (i) die 1-
deoksi-D-xilulose 5-fosfaat (DOXP)/2-C-metiel-D-eritritol-4-fosfaat (MEP) pad (d.w.s.
die plastiediese isopenteniel difosfaat biosintetiese pad); (ii) die mevalonaat pad
(d.w.s. the sitosoliese/mitokondriale IPP biosintetiese pad); (iii) die karotenoiëd
biosintetiese pad; (iv) die absisiensuur biosintetiese pad (as 'n afbraak produk van
karotenoiëde) en die algemene isoprenoïed bisintetiese paaie (as voorlopers van
karotenoiëde ).
Die vollengte gene (d.w.s. vanaf die geskatte ATG tot die STOP kodon) van
DOXP-sintase (DXS), 4-hidroksi-3-metielbut-2-eniel difosfaatreduktase (lytB), IPPisomerase
(IPI), 3-hidroksi-3-metielglutariel koensiem A sintase (HMGS), fitoeën
sintase (PSY), likopeen p-siklase (LBCY), p-karoteen hidroksilase (BCH), zeaxantien
oksidase (ZEP), 9-cis-epoksi karotenoiëd dioksigenase (NCED), farnesiel difosfaat
sintase (FPS)en geranielgeraniel difosfaat sintase (GGPS) is met behulp van. RTPKR
vanaf eDNA geïsoleer. Die vollengte genomiese kopieë en die verwagte
promotors van die DXS, PSY, LBCY, BCH, NCED and ZEP gene is ook geïsoleer
d.m.v. die opstel en sifting van subgenomiese biblioteke. Vergelykende analises van
die genoom- en eDNA kopieë het insiggewende data oor die genomiese rangskikking
van die gene, insluitende die intron-ekson setels in V. vinifera gelewer. Die
kopiegetalle van DXS, PSY, LBCY, BCH, NCED en ZEP is bepaal. DXS, PSY, BCH
en ZEP is in die Vitis-genoom as enkel kopieë teenwoordig, terwyl LBCYen NCED
twee en drie kopieë, repektiewelik, beslaan.
Die transkipsionele aktiwiteit van die verwagte promotors van ses van die
geïsoleerde gene (naamlik DXS, PSY, LBCY, BCH, ZEP en NCED) is d.m.v. 'n
tydelike verklikkergeentoets ondersoek. Geeneen van die promotors het die
transkripsie van die verklikkergeen bemiddel nie. Die transkripsie van die gene is
egter wel bewys deur van northernhibridisasies en/of RT-PKR gebruik te maak. Die
promotors van hierdie gene kan dus as transkipsioneel aktief beskou word.
Voorlopige uitdrukkingsprofiele van PSY, LBCY, BCH, en ZEP is in verskillende
plantorgane bepaal; die profiele was deurgaans hoër in fotosinteties aktiewe
weefsels. Die uitdrukkingsprofiele van die gene is verder ook in reaksie op
verskillende induktiewe behandelings (absisiensuur, NaCI en beskadiging) bepaal. Vyf van die vollengte gene (IPI, GGPS, PSY, LBCYen BCH) is funksioneel bewys in
'n bakteriese funksionele kleurkomplementasiesisteem.
In silico analises van die afgeleide proteïene van al elf geïsoleerde gene het 'n
hoë vlak van homologie met ooreenstemende proteiene van ander plantspesies
getoon. Gekonserveerde domeine is ook in die proteïensekwense van die
geïsoleerde gene teenwoordig. Hierdie proteïene het deurgaans dieselfde
domeinprofiele vertoontoon as homoloë in ander spesies (bakterieë, alge en plante).
Die sub-sellulêre teikening van die gene kon voorspel word deur die seinpeptiede in
die proteiensekwense te eien. Aangesien hierdie gene betrokke is by biosintetiese
paaie wat in diskrete kompartemente plaasvind; is die sub-selluiêre lokalisering van
hierdie proteïene voorspelbaar. Die karotenoïed biosintetiese gene (PSY, LBCY,
BCH en ZEP), die absisiensuur biosintetiese geen, NCED, sowel as die DOXP/MEP
pad se gene (DXS, lytB en IPI) kom almal in die chloroplast voor. Die
mevalonaatpadgeen, HMGS, word na beide die sitosol en die mitokondria geteiken,
terwyl die algemene isoprenoïed voorlopergene, FPS en GGPS, onderskeidelik na
die sitosol en die chloroplast geteiken word. Die verkreë voorspellings stem met die
lokalisering van die biosintetiese paaie in die selooreen.
Om ons kennis rakende karotenoïed biosintese en veral hulle funksie(s) in
plante te verbreed, het ons een van die geïsoleerde gene, BCH, in die model plant,
Nicotiana tabacum, konstitutief ooruitgedruk. Plante wat die BCH geen in die "sense"
orientasie uitgedruk het, kon normale fotosintetiese aktiwiteit handhaaf onder
kondisies wat foto-inhibisie en foto-osidatiewe skade in die ongetransformeerde
kontrole plante veroorsaak het. Hierdie resultaat is met chlorofil fluoresensie
analises aangetoon terwyl dit met CO2 assimilasie- en huidmondjie
geleidingseksperimente bevestig is. Chlorofil fluoresensie metings het aangetoon
dat die beskermingsvermoë van die transgeniese plante verhoog is, en dit dan die
plante in staat stelom fotosintetese te handhaaf onder streskondisies van hoë lig.
Proteïen analises het aangetoon dat 'n integrale fotosintetiese proteien, die 01
proteïen, word veral deur die verhoogde zeaxantien vlakke in die BCH transgeniese
plante beskerm. Plante wat verminderde zeaxantien vlakke gehad het, weens die
konstitutiewe ooruitdrukking van die BCH geen in die anti-"sense" orientasie, het die
teenoorgestelde bewys. Met ander woorde. laer BCH vlakke (en dus laer zeaxantien
vlakke) het tot plante wat meer vatbaar was vir hoë lig geïnduseerde stress gelei.
Hierdie resultate het die essensiële beskermende rol wat karotenoiede tydens
fotosintese speel, uitgelig. Die vermoë om hierdie beskermende meganisme te
manipuleer in transgenies plante het aangetoon dat die sisteem in plante, alhoewel
effektief, nie optimaal is nie. Enige verbetering in 'n plant se inherente vermoë om
streskondisies te weerstaan sal die plant se algemene gesondheid en dus
produktiwiteit beïnvloed. As sulks sal hierdie in meeste gewasspesies toepassing
vind. Hierdie studie beskryf die isolering en karakterisering van gene wat direk, of
indirek, by karotenoïedbiosintese betrokke is. Verdere studies, en veral die
manipulering van hierdie gene in model plante, sal die fisiologiese rol van spesifieke
karotenoïeede in fotosintese, en die plant as 'n geheel, ontrafel.
|
Page generated in 0.0836 seconds