• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 5
  • 1
  • Tagged with
  • 49
  • 49
  • 49
  • 42
  • 39
  • 36
  • 31
  • 31
  • 19
  • 18
  • 13
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Geometrické sémantické genetické programování / Geometric Semantic Genetic Programming

Končal, Ondřej January 2018 (has links)
This thesis examines a conversion of a solution produced by geometric semantic genetic programming (GSGP) to an instantion of cartesian genetic programming (CGP). GSGP has proven its quality to create complex mathematical models; however, the size of these models can get problematically large. CGP, on the other hand, is able to reduce the size of given models. This thesis combinated these methods to create a subtree CGP (SCGP). The SCGP uses an output of GSGP as an input and the evolution is performed using the CGP. Experiments performed on four pharmacokinetic tasks have shown that the SCGP is able to reduce the solution size in every case. Overfitting was detected in one out of four test problems.
22

Klasifikace obrazů pomocí genetického programování / Image Classification Using Genetic Programming

Jašíčková, Karolína January 2018 (has links)
This thesis deals with image classification based on genetic programming and coevolution. Genetic programming algorithms make generating executable structures possible, which allows us to design solutions in form of programs. Using coevolution with the fitness prediction lowers the amount of time consumed by fitness evaluation and, therefore, also the execution time. The thesis describes a theoretical background of evolutionary algorithms and, in particular, cartesian genetic programming. We also describe coevolutionary algorithms properties and especially the proposed method for the image classifier evolution using coevolution of fitness predictors, where the objective is to find a good compromise between the classification accuracy, design time and classifier complexity. A part of the thesis is implementation of the proposed method, conducting the experiments and comparison of obtained results with other methods.
23

Možnosti akcelerace symbolické regrese pomocí kartézského genetického programování / Acceleration of Symbolic Regression Using Cartesian Genetic Programming

Hodaň, David January 2019 (has links)
This thesis is focused on finding procedures that would accelerate symbolic regressions in Cartesian Genetic Programming. It describes Cartesian Genetic Programming and its use in the task of symbolic regression. It deals with the SIMD architecture and the SSE and AVX instruction set. Several optimizations that lead to a significant acceleration of evolution in Cartesian Genetic Programming are presented. A method of a bit-level parallel simulation that uses AVX2 vectors allows to process 256 input combinations of a logic circuit in paralell. Similarly it is possible to use a byte-level parallel simulation and work with 32 bytes when evolving an image filter. A new method of batch mutation can accelerate the evolution of combinational logic circuits thousand times depending on the problem size. For example, using a combination of these and other methods the evolution of 5 x 5b multipliers took 5.8 seconds on average on an Intel Core i5-4590 processor.
24

Evoluční návrh neuronových sítí využívající generativní kódování / Evolutionary Design of Neural Networks with Generative Encoding

Hytychová, Tereza January 2021 (has links)
The aim of this work is to design and implement a method for the evolutionary design of neural networks with generative encoding. The proposed method is based on J. F. Miller's approach and uses a brain model that is gradually developed and which allows extraction of traditional neural networks. The development of the brain is controlled by programs created using cartesian genetic programming. The project was implemented in Python with the use of Numpy library. Experiments have shown that the proposed method is able to construct neural networks that achieve over 90 % accuracy on smaller datasets. The method is also able to develop neural networks capable of solving multiple problems at once while slightly reducing accuracy.
25

Koevoluce obrazových filtrů a prediktorů fitness / Coevolution of Image Filters and Fitness Predictors

Trefilík, Jakub January 2015 (has links)
This thesis deals with employing coevolutionary principles to the image filter design. Evolutionary algorithms are very advisable method for image filter design. Using coevolution, we can add the processes, which can accelerate the convergence by interactions of candidate filters population with population of fitness predictors. Fitness predictor is a small subset of the training set and it is used to approximate the fitness of the candidate solutions. In this thesis, indirect encoding is used for predictors evolution. This encoding represents a mathematical expression, which selects training vectors for candidate filters fitness prediction. This approach was experimentally evaluated in the task of image filters for various intensity of random impulse and salt and pepper noise design and the design of the edge detectors. It was shown, that this approach leads to adapting the number of target objective vectors for a particular task, which leads to computational complexity reduction.
26

Evoluční návrh pro aproximaci obvodů / Evolutionary Design for Circuit Approximation

Dvořáček, Petr January 2015 (has links)
In recent years, there has been a strong need for the design of integrated  circuits showing low power consumption. It is possible to create intentionally approximate circuits which don't fully implement the specified logic behaviour, but exhibit improvements in term of area, delay and power consumption. These circuits can be used in many error resilient applications, especially in signal and image processing, computer graphics, computer vision and machine learning. This work describes an evolutionary approach to approximate design of arithmetic circuits and other more complex systems. This text presents a parallel calculation of a fitness function. The proposed method accelerated evaluation of 8-bit approximate multiplier 170 times in comparison with the common version. Evolved approximate circuits were used in different types of edge detectors.
27

Akcelerace evolučního návrhu obvodů na úrovni tranzistorů na platformě Zynq / Acceleration of Transistor-Level Evolutionary Design of Digital Circuits Using Zynq

Mrázek, Vojtěch January 2014 (has links)
The goal of this project is to design a hardware unit that is designed to accelerate evolutionary design of digital circuits on transistor level. The project is divided to two parts. The first one describes design methods of the MOSFET circuits and issues of evolutionary algorithms. It also analyses current results in this domain and provides a new method for the design and optimization. The second part describes proposed unit that accelerates the new method on the circuit Zynq which integrates ARM processor and programmable logic. The new method functionality has been empirically analysed in the task of optimization of few circuits with more inputs. The hardware unit has been tested for designing of gates on transistor level.
28

Evoluční resyntéza kombinačních obvodů / Evolutionary Combinational Circuit Resynthesis

Pták, Ondřej January 2013 (has links)
This project deals with combinational digital circuits and their optimization. First there are presented main levels of abstraction utilized in the design of combinational digital circuits. Afterwards different methods are surveyed for optimization of combinational digital circuits. The next part of this project is mainly devoted to evolutionary algorithms, their common characteristics and branches: genetic algorithms, evolutionary strategies, evolutionary programming and genetic programming. The variant of genetic programming called Cartesian Genetic Programming (CGP) and the use of CGP in various areas, particularly in the synthesis and optimization of combinational logic circuits are described in detail. The project also discusses some modifications of CGP and the scalability problem of evolutionary circuit design. Consequential part of this thesis describes the method for evolution resynthesis of combinational digital circuits. There is description of design, especially the method of splitting circuits into subcircuits, and implementation details. Finally experiments with these method and their results are described.
29

Nástroj pro vizuální analýzu evoluce obvodů / A Tool for Visual Analysis of Circuit Evolution

Staurovská, Jana January 2012 (has links)
The main goal of the master's thesis is to compose a study on cartesian genetic programming with focus on evolution of circuits and to design a concept for visualisation of this evolution. Another goal is to create a program to visualise the circuit evolution in cartesian genetic programming, its generations and chromosomes. The program is capable of visualising the changes between generations and chromosomes and comparing more chromosomes at once. Several user cases had been prepared for the resulting program.
30

Symbolická regrese a koevoluce / Symbolic Regression and Coevolution

Drahošová, Michaela January 2011 (has links)
Symbolic regression is the problem of identifying the mathematic description of a hidden system from experimental data. Symbolic regression is closely related to general machine learning. This work deals with symbolic regression and its solution based on the principle of genetic programming and coevolution. Genetic programming is the evolution based machine learning method, which automaticaly generates whole programs in the given programming language. Coevolution of fitness predictors is the optimalization method of the fitness modelling that reduces the fitness evaluation cost and frequency, while maintainig evolutionary progress. This work deals with concept and implementation of the solution of symbolic regression using coevolution of fitness predictors, and its comparison to a solution without coevolution. Experiments were performed using cartesian genetic programming.

Page generated in 0.551 seconds