• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of surface-active agents on the activity of tyrosinase and catalase ...

Tenenbaum, Leon Edward, January 1940 (has links)
Thesis (Ph. D.)--Columbia University, 1942. / Vita. Bibliography: p. 22.
2

Characterization And Analysis Of The Antioxidant Capacity Of Functional Phenolics Oxidized By Scytalidium Thermophilum Catalase Phenol Oxidase (catpo)

Soyler, Ulviye Betul 01 September 2012 (has links) (PDF)
Scytalidium thermophilum is a termophilic fungus that effectively produces the extracellular enzyme catalase phenol oxidase (CATPO). The enzyme is distinct among catalases with its bifunctionality of oxidising phenolic compounds in the absence of H2O2. CATPO is capable of oxidizing catechol, chlorogenic acid, caffeic acid and catechin which are ortho &ndash / diphenolic compounds. Diphenolic compounds are known as strong antioxidants. Catalase is one of the important antioxidant enzymes. Therefore, in this thesis the effect of CATPO on the final antioxidant capacity of the oxidized products was analysed. Antioxidant capacity measurements of oxidized and unreacted phenolic compounds were done using the two widely used methods TEAC and FRAP. CATPO oxidized catechol showed 2.4 fold increase when compared to its nonoxidized form, which was highest among others. Catechol was followed by caffeic acid, chlorogenic acid, and catechin. This finding is new to the literature and may be of importance to the antioxidant mechanism of organisms. Results have also shown that the most well known phenol oxidases, laccase and tyrosinase, do not result in such high increases in antioxidant capacity upon oxidation of the substrates tested. Due to this finding, as a possible means of applying CATPO to increase the antioxidant capacity of products daily consumed, tea was selected. Tea is the second most consumed beverage after water and it is known to possess high amounts of flavanols. Green tea is rich in catechins whereas black tea is a rich source of theaflavins and thearubigins. Fermentation is a critical process for production of good quality tea and is the key step differing between green and black tea production. During this process phenol oxidases catalyze the oxidation of polyphenolic compounds present in tea leaves to their corresponding o-quinones. Utilization of CATPO in tea samples resulted in an increase in antioxidant capacity and its effect was enhanced by an increase in brewing time. Interestingly, the addition of sugar decreased antioxidant capacity. Laccase and tyrosinase were ineffective in increasing the antioxidant capacity of tea samples.
3

Cloning Of The Scytalidium Thermophilum Bifunctional Catalase / Phenol Oxidase Gene And Expression In Aspergillus Sojae

Ercin, Hatice Ozlem 01 February 2008 (has links) (PDF)
Scytalidium thermophilum is a thermophilic fungus with an important role in the composting process of mushroom cultivation. An extracellular phenol oxidase of Scytalidium thermophilum (STEP) with novel features was previously studied in our laboratory. This enzyme later turned out to be a catalase having phenol oxidase activity. The aim of this study was to clone Scytalidium thermophilum bifunctional catalase/phenol oxidase encoding gene and express the gene in Aspergillus sojae for future site directed mutagenesis studies. Scytalidium thermophilum catalase gene was first cloned into E. coli XL1 Blue MRF&rsquo / and then heterologously expressed in Aspergillus sojae ATCC11906. For that aim, the catalase gene was amplified using specific primers, excluding the signal and pro-peptide coding regions and amplified fragment was then cloned into E.coli XL1 Blue MRF&rsquo / and sequenced. It was observed that the cloned gene, named as catpo, was 10 amino acids different from the amino acid sequence of the S.thermophilum catalase gene formerly cloned by Novo Nordisk. The catpo gene encoding a mature protein of 681 amino acids was then ligated onto expression vector pAN52-4 and the recombinant plasmid was transformed into Aspergillus sojae ATCC11906. Heterologous expression was observed under the control of the glyceraldehydes 3-phosphate dehydrogenese promoter of Aspergillus nidulans and the secretion signal of the glucoamylase gene of Aspergillus niger. Catalase activity of the transformants reached at a level of 13206 U/g at the end of the fourth day of cultivation. However, this is still lower than the catalase activity of the gene donor strain of Scytalidium thermophilum.
4

Functional And Structural Analysis Of Catalase-phenol Oxidase From Scytalidium Thermophilum

Yuzugullu, Yonca 01 February 2010 (has links) (PDF)
Scytalidium thermophilum produces a novel phenol oxidase, which has turned out to be a bifunctional catalase-phenol oxidase (CATPO) during the course of this work, by other researchers of our group. Therefore, in the beginning of the studies, substrate specificity and inhibitor assays were conducted on the crude enzyme, followed by production, purification, cloning, expression, and mutagenesis and crystallography studies for further functional and structural analysis of CATPO. Accordingly, substrate specificity and inhibitory tests applied for crude enzyme characterisation presented the similarity of the phenol oxidase nature of CATPO essentially to catechol oxidase. Production studies were performed to investigate the effects of different factors including induction time, growth temperature, exogenous iron and hydrogen peroxide addition. In view of that, CATPO is constitutively produced in a growth associated manner. However, some phenolic compounds enhance its production. In this study, 15 phenolic compounds were tested for their ability to affect CATPO production. Of the phenolic compounds tested, catechol, resorcinol and vanillic acid caused repression of CATPO production. On the other hand, caffeic acid, myricetin and resveratrol enhanced CATPO production. As a biocatalyst, the efficiency of CATPO was examined and found to be a good candidate for getting pharmaceutically important drug intermediates. Its dual mechanism was analysed through side-directed mutagenesis. Two conserved residues (His101 and Val142) were mutated to discriminate catalase and phenol oxidase activities. Spectroscopic and mutagenesis studies exhibited the presence of heme d centre. Lastly, its structure was analysed by X-ray crystallography and found to have a tetrameric structure.

Page generated in 0.0611 seconds