Spelling suggestions: "subject:"catalysis"" "subject:"atalysis""
661 |
Transition Metal Oxides for Solar Water Splitting DevicesSmith, Adam 23 February 2016 (has links)
Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials.
This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and strongly acidic conditions used for oxygen evolution. Chapter V includes work characterizing nickel oxide/oxyhydroxide oxygen evolution catalysts at near-neutral pH. Key findings include (1) previous reports of anodic conditioning resulting in greater catalytic activity are actually due to incidental incorporation of iron impurities from solution and (2) through intentional iron incorporation via electrochemical co-deposition, catalytic activity is increased ~50-fold over Fe-free catalysts.
This dissertation contains previously published coauthored material.
|
662 |
Copper-Catalyzed Borylation of Hemiaminal Ethers and Ruthenium-Catalyzed Tandem Reactions of Nitrogen-Tethered DienesXiao, Lu January 2016 (has links)
Thesis advisor: Marc L. Snapper / Chapter 1 Bisphosphine monoxides have unique coordinating capabilities with transition metals. Several research groups have independently reported transition metal-catalyzed highly stereoselective reactions by using chiral bisphosphine monoxides as the ligands. A review of recent works in this field is provided in this chapter to showcase the features of this class of ligand. Chapter 2 We have developed a copper-catalyzed borylation method to synthesize α-aminoboronic esters, which are biologically interesting molecules in enzyme inhibitions. Employment of hemiaminal ethers as substrates to in situ generate the corresponding aldimines obviated purification of the unstable aldimines and potential imine-enamine tautomerization. By using a chiral bisphosphine monoxide ligand in our copper-catalyzed borylation conditions, we successfully synthesized a variety of enantioenriched alkyl-substituted α-aminoboronic esters in good yields and with good enantioselectivity. Chapter 3 A ruthenium-catalyzed three-step tandem sequence was established to prepare nitrogen-protected 2,3-dihydroxypyrrolidines and 2,3-dihydroxypiperidines. This tandem sequence includes ring-closing metathesis, olefin isomerization and olefin dihydroxylation, and utilizes the second-generation Grubbs’ catalyst as the initial ruthenium precatalyst. Readily accessible nitrogen-tethered dienes were used as the substrates to prepare the heterocyclic compounds in an efficient fashion. Through optimization, we discovered the optimal conditions for ruthenium-catalyzed dihydroxylation of ene-carbamates and ene-sulfonamides, which were the challenging substrates in the previous methods. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
663 |
Catalytic Enantioselective Allylation of Imines and Trifluoroketones Using New and Underutilized Organoboron ReagentsMszar, Nicholas Walter January 2017 (has links)
Thesis advisor: Amir H. Hoveyda / A general method for the catalytic enantioselective addition of silylallenes to phosphinoyl aldimines has been developed. Reactions are promoted in the presence of 5.0 mol% of an N–heterocyclic carbene–copper complex and a silyl-protected propargyl boron reagent. The reaction is efficient, requiring only 10 minutes, highly group selective, enantioselective and products can be further functionalized. Utility is highlighted in the total synthesis of marine alkaloid (S)-(–)-cyclooroidin using our product as a key intermediate in the total synthesis. The catalytic enantioselective addition of a 1,3-butadiene has been developed using a homoallenylboron reagent. These transformations are promoted by a C1-symmetric N–heterocyclic carbene–copper complex within 4 hours. Products can be obtained with gamma selectivity to afford the diene containing product. Efforts have been expanded towards the application of our product as a key intermediate towards the total synthesis of (+)-homochelidonine. Key transformations include a highly selective 1,2-protoboration of the 1,3-diene product followed by a Pd-catalyzed intramolecular sp2-sp3 Suzuki cross coupling. The development of a general catalytic enantioselective method for the propargyl addition to trifluoroketones has been studied. Reactions are complete within 15 minutes, broadly applied to alkyl-, alkenyl, alkynyl, aryl, and heteroaryl-substituted trifluoroketones, highly enantioselective and group selective. Key findings include use of an aminophenol containing an electron-withdrawing to improve reactivity and enantioselectivities. The method can be carried out on gram scale and has been applied to a substrate which can be elaborated towards glucocorticoid agonist BI 653048. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
664 |
Studies of BN-Isosteres of Carbocyclic SystemsGiustra, Zachary Xavier January 2018 (has links)
Thesis advisor: Shih-Yuan Liu / The first three chapters of this dissertation elaborate on certain facets of the isosteric relationship between different types of boron-nitrogen-containing heterocycles and the corresponding all-carbon compounds. In this vein, Chapter 1 describes selective photoisomerization of aromatic 1,2-dihydro-1,2-azaborines to BN-analogues of bicyclo[2.2.0]hexa-2,5-diene (Dewar benzene). In one instance, the photoisomer product was further derivatized into a series of disubstituted cyclobutanes through manipulations of the boron functionality. Chapter 2 discloses a combined experimental/theoretical mechanistic investigation of preliminary hydrogen release from the amine borane unit in a pair of BN-cycloalkanes. In Chapter 3, the kinetics of complementary dehydrogenation of the alkyl units in a BN-cyclohexene derivative are compared with those of related six-membered carbocycles. Chapter 4 treats with the separate subject of enantioselective silylation of glycerol by a catalytic strategy centered around reversible covalent binding of substrate hydroxyl groups. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
665 |
Tandem Reactions of Dienes Generated by Enyne MetathesisGavenonis, Jason January 2010 (has links)
Thesis advisor: Marc L. Snapper / A catalyst of notoriety Decomposes with great variety. Transformations after metathesis Facilitate tandem catalysis. This reaction has a proclivity For new regioselectivity With methanolic modification: Tandem enyne hydrovinylation. From a diene protonation event, Unexpected reaction with solvent, During catalyst optimization: One-pot enyne hydroarylation. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
666 |
Enantioselective synthesis and stereospecific transformations of organoboronic estersEdelstein, Emma Kate January 2018 (has links)
Thesis advisor: James P. Morken / This dissertation details the development of several enantioselective or stereospecific transformations involving organoboronic esters. Chapter one will introduce electrophile-induced boronate rearrangements which underpins much of the reactivity that will be discussed in subsequent chapters. In chapter two the conjunctive cross-coupling reaction is presented. Its development and application to the synthesis of non-racemic boronic esters, along with its application to the synthesis of enantioenriched allylic boronic esters, will be discussed. In chapter three the cross-coupling of geminal bis(boronic) esters is introduced and the development of a method to employ them in cross-coupling with alkenyl bromides, affording enantioenriched substituted allylic boronic esters is outlined. In chapter four we highlight the utility of allylic boronic esters, and detail the development of a cross-coupling reaction that involves the use of these substrates and halide electrophiles to furnish enantiomerically enriched products containing all carbon quaternary stereocenters. Finally, in chapter five we describe the development of a metalfree amination reaction of organoboron compounds, which is able to deliver otherwise difficult-to-access enantiomerically enriched α-tertiary amines. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
667 |
Mechanistic Studies, Catalyst Development, and Reaction Design in Olefin Metathesis:Mikus, Malte Sebastian January 2019 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. Exploring Ligand Effects in Ruthenium Dithiolate Carbene Complexes. Ruthenium dithiolate metathesis catalysts discovered in the Hoveyda group have been a valuable addition to the field of olefin metathesis. While the catalyst shows unique selectivity and reactivity, quantifying and mapping key interactions in the catalyst framework to elucidate and explain causes is difficult. We, therefore, decided to use the neutral chelating or monodentate ligand, controlling initiation, as a structural probe. By altering its properties and observing changes in the catalyst, we sought to deepen our understanding of these complexes. We established a trans influence series with over 20 catalysts and correlated the impact on catalyst initiation. Further, we show that in the case of strongly σ-donating and π-accepting ligands such as phosphites and isonitriles, the complex exhibits fluxional behavior. The catalysts ground state is elevated to such a degree that thiolate Ruthenium bonds become labile and rapidly exchange. While Ruthenium dithiolate catalysts were readily applied to metathesis polymerization, their use in the synthesis of small molecules was initially less forthcoming. Specifically, reactions involving terminal olefins lead to rapid catalyst deactivation and only low conversion. We were able to determine that the potential energy stored in the trans-influence between the thiolate ligand and the NHC can be released in a sulfur shift to reactive Ruthenium methylidene species. Since methylidenes are formed by reaction with terminal olefins, use of an excess of internal olefins can prevent their formation. Chapter 2. Harnessing Catalyst Fluxionality in Olefin Metathesis. Depending on its use, material requirements can vary significantly. Materials that can easily be adapted to a given application, for example by varying tensile strength, melting point or solubility, are desirable. Controlling the polymers tacticity (the adjacent stereocenters in a polymer chain) is a straight forward way to achieve just that. Ru dithiolate catalysts should give highly syndiotactic polymers due to their single stereocenter undergoing inversion during every metathesis step. The fluxional nature of the catalyst allows for control of polymer tacticity from 50% (atactic) to ≥95% syndiotacticity by changing monomer concentration. We determined the factors which are responsible for fluxionality and synthesized complexes that give either high or low levels of tacticity over a broader range of monomer concentration. Chapter 3. Harnessing Catalyst Fluxionality in Olefin Metathesis. The importance of fluorine-containing molecules is hard to understate, keeping in mind the surge of new methodologies for their synthesis and the medical breakthroughs they enable. However, efficient and practical syntheses of stereodefined alkenyl fluorides are rare. In this context, we have developed enantioselective boryl allylic substitution of allylic fluorides, which yield enantioenriched γ-alkenyl fluoride substituted allyl boronate esters. The reaction is catalyzed by Cu-based catalysts that are prepared in-situ and delivered as products with high yield and enantioselectivity. Mechanistic inquiry shows the reaction is not a concerted allylic substitution. An intermediate Cu alkyl complex is formed after the Cu boron addition is made to the double bond, which only slowly undergoes β-fluorine elimination in the presence of a Lewis acid. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
668 |
Mechanism and Interface Study of One-to-one Metal NP/Metal Organic Framework Core-shell StructureZhang, Furui January 2017 (has links)
Thesis advisor: Chia-Kuang (Frank) Tsung / The core-shell hybrid structure is the simplest motif of two-component systems which consists of an inner core coated by an outer shell. Core-shell composite materials are attractive for their biomedical, electronic and catalytic applications in which interface between core and shell is critical for various functionalities. However, it is still challenging to study the exact role that interface plays during the formation of the core-shell structures and in the properties of the resulted materials. By studying the formation mechanism of a well interface controlled one-to-one metal nanoparticle (NP)@zeolite imidazolate framework-8 (ZIF-8) core-shell material, we found that the dissociation of capping agents on the NP surface results in direct contact between NP and ZIF-8, which is essential for the formation of core-shell structure. And the amount of capping agents on the NP surface has a significant effect to the crystallinity and stability of ZIF-8 coating shell. Guided by our understanding to the interface, one-to-one NP@UiO-66 core-shell structure has also been achieved for the first time. We believe that our research will help the development of rational design and synthesis of core-shell structures, particularly in those requiring good interface controls. / Thesis (MS) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
669 |
Desenvolvimento de complexo de Ru(II) com 3-metilpiperidina para atuar como catalisador em reações de polimerização via metátese de olefinas cíclicas / Development of Ru (II) complex with 3-methylpiperidine to act as a catalyst in polymerization reactions via cyclic olefin metathesisPereira, João Clécio Alves 22 February 2018 (has links)
A molécula de 3-metilpiperidina (3-Mepip) foi investigada como ligante ancilar em um novo complexo do tipo [RuCl2(PPh3)2(amina)] em polimerização via metátese de olefinas ciclicas por abertura de anel (ROMP) de norborneno (NBE) e norbornadieno (NBD). A síntese do novo complexo foi realizada partindo-se do complexo precursor [RuCl2(PPh3)3], e foi caracterizado por: EPR, análise elementar de CHN, infravermelho (FTIR) e RMN de 31P. Com base nos resultados obtidos é possível propor um complexo pentacoordenado com geometria pirâmide de base quadrada (PBQ), estando os íons cloretos trans-posionados no plano equatorial da esfera de coordenação do metal, com a amina ocupando a posição apical da pirâmide devido ao seu forte caráter doador σ. As reações de ROMP dos monômeros NBE e NBD utilizando o novo complexo foram realizadas em atmosfera de argônio em função da razão molar de molar [monômero]/[Ru] (1000, 3000, 5000, 7000 e 10000), tempo (5, 30 e 60 min) e temperatura (25 e 50 °C). Com um volume de 5 µ de etildiazoacetato (EDA), 25 °C e uma razão molar de 5000 de monômero a 5 min, obteve-se 65 % de poliNBE com Mn = 0,8 x 105 e IPD igual a 1,9. Os polímeros obtidos com NBD apresentaram um rendimento em torno de 20% a 25 °C por 5 min. Reações de polimerização em atmosfera aberta resultaram em valores de rendimento próximos dos observados em atmosfera de argônio, sugerindo dessa forma que o novo complexo é resistente a processos oxidativos provocados pelo O2 da atmosfera ambiente. As reações de polimerização foram realizadas na presença de outros diazocompostos benzildiazoacetato (BDA) e tertbutildiazoacetato (TBDA) como fontes de carbenos, afim de avaliar a influência eletrônica e estérica provocada pelos diferentes grupo R desses diazocompostos. Foi observado que o etildiazoacetato (EDA) apresentou os melhores valores de rendimento dos polímeros isolados, provavelmente devido ao balanço nas características estéricas e eletrônicas desse diazo frente ao centro de Ru(II). / The 3-methylpiperidine (3-Mepip) molecule was investigated as ancillary ligand in a novel [RuCl2(PPh3)2(amine)] type complex for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) and norbornadiene (NBD). The synthesis of the new complex was performed from the precursor complex [RuCl2(PPh3)3], and it was characterized by: EPR, CHN elemental analysis, infrared (FTIR) and 31P NMR (1H). From the obtained results it was possible to propose a pentacoordenado complex with square-shaped pyramid geometry (PBQ), with chloride ions trans-positioned in the equatorial plane of the coordinating metal sphere, with the amine occupying the apical position of the pyramid due to its strong σ-donor character. The ROMP reactions of NBE and NBD monomers using the new complex were performed under argon atmosphere as a function of the [monomer]/[Ru] molar ratio (1000, 3000, 5000, 7000 and 10000), reaction time (5, 30 and 60 min) and temperature (25 and 50 ° C). With a volume of 5 µL of ethyldiazoacetate (EDA), at 25 °C and a 5000 molar ratio of monomer for 5 min, 65% polyNBE was obtained with Mn = 0.8 x 105 and IPD equal to 1.9. The polymers obtained with NBD showed 20% yield at 25 °C for 5 min. The polymers obtained with norbornadiene showed a yield of about 20% at 25 °C for 5 min. Polymerization reactions in air atmosphere resulted in values close to those observed in argon atmosphere, suggesting that the complex presents resistance to oxidative processes caused by O2 from the ambient atmosphere. The polymerization reactions were performed in the presence of other diazocompounds benzyldiazoacetate (BDA) and tert-butyldiazolacetate (TBDA) as sources of carbenes. In order to evaluate the electronic and steric influence caused by the different R groups of these diazocompounds, it was observed that ethyldiazoacetate EDA) presented the best yield values of the isolated polymers, probably due to the balance in the steric and electronic characteristics of this diazo in front of the Ru(II) center.
|
670 |
Cu-Catalyzed Amination of sp3 C-H BondsWang, Anqi 14 December 2018 (has links)
Presented herein is the development, optimization and mechanistic investigation of an Cu catalytic system for the oxidation of sp 3 C-H bond of simple arenes to form C-N bond in a direct manner. Due to the prevalence of nitrogen containing molecules among biologically active synthetic and natural compounds, synthetic chemists have always been motivated to develop new efficient ways to directly transform ubiquitous carbonhydrogen (C-H) bonds into carbon- nitrogen (C-N) bonds. Recent advances in transition metal catalyzed C-H amination has demonstrated that it is not only possible but also practical to functionalize C-H bonds that are often considered inert in one step, circumventing more classical, sequential functional group interconversion approaches. Existing catalytic systems that promote the transition metal-catalyzed, amination of sp 3 C-H bonds displayed certain limitations, especially the lack of built-in versatility and stability in their amination reagents. To overcome these drawbacks of these existing catalytic system, our group developed a new Cu amination protocol that deployed versatile hydroxylamine-based with general structure RSO 2 NH-OAc as amination reagents. Although the reactivity of the catalytic system ranges from moderate to good, the catalytic system provided promising results using simple arene substrates. Further detailed mechanistic studies revealed that the reaction undergoes an unprecedented two subsequent cycles divided by a major intermediate PhCH 2 (NTsOAc). The proposed mechanism is consistent with radical clock experiments, observed reaction profiles, the need for excess of substrate, and the documented role of the ligand in the catalytic system. The exciting proposed mechanism led to a new type of copper catalyzed amination reaction using N- fluorobenzenesulfonimide (NFSI) as oxidant, which overcomes the need to use an excess of substrate. A wide range of unactivated amines HNR 1 R 2 , including sulfonamide and benzamide, can be used as amine sources, which enables the installation of different nitrogen groups on benzylic sp 3 C-H bond of a variety of substrates in moderate to excellent yield. Moreover, mechanistic experiments and critical analysis of related reactivity in the literature provide insight into the catalytic cycle, resulting in a proposal that details the role of both oxidant and amine source in the new system.
|
Page generated in 0.0545 seconds