Spelling suggestions: "subject:"catalysis"" "subject:"atalysis""
911 |
Růst, funkcionalizace a charakterizace 2D materiálů na krystalických substrátech / Formation, Functionalization and Characterization of 2D Materials on Crystalline SupportsLópez-Roso Redondo, Jesús Rubén January 2020 (has links)
In this thesis, the growth of 2D materials, in particular graphene and FeO2 on crystalline supports, is studied by a multitude of surface-sensitive techniques. The mechanisms of graphene growth in ultra-high vacuum and high Ar pressure are explored, and a simple device for the manufacturing of high-quality, monocrystalline graphene on SiC is described. The electronic and chemical properties of B and N dopants on graphene are characterized by means of STM/AFM with CO-functionalized tips and supported by DFT calculations. The chemical interaction of a probe molecule (FePc) with doped graphene is also investigated. The long-standing controversy of the so-called "biphase" reconstruction of α - Fe2O3(0001) is resolved by the discovery of a complete FeO2 overlayer in this phase. The structure of this overlayer is investigated by means of STM, LEEM and DFT calculations. A thorough description of the routes to obtain single phases over the whole surface of α - Fe2O3(0001) is provided.
|
912 |
Development of Catalytic Conjunctive Cross-Coupling Reactions and Progress Towards the Total Synthesis of the Sarcodictyins:Myhill, Jesse Alexander January 2020 (has links)
Thesis advisor: James P. Morken / This dissertation describes the development of a method for the stereoselective synthesis of organoboronates and the applications of these products to target-oriented synthesis. The first chapter discusses an investigation of the palladium-catalyzed conjunctive cross-coupling reaction by kinetic analysis. This reaction enables the asymmetric synthesis of organoboronates by utilizing the 1,2-metallate rearrangement of borates as a mechanistic step in a cross-coupling reaction. The second chapter describes the application of the conjunctive cross-coupling reaction to the asymmetric synthesis of tertiary boronic esters. In chapter three, the conjunctive cross-coupling reaction of 1,2-disubstituted alkenyl boronates is presented. Such a substrate class is susceptible to the undesired Suzuki-Miyaura cross-coupling reaction, and this challenge led to the development of a novel diol ligand for boron as an effective solution. The final chapter details the progress toward the total synthesis of the sarcodictyin natural products, which display promising anti-cancer activity. The synthetic route utilizes reactions of organoboronates for powerful C–C bond formations; the construction of a fully-cyclyzed advanced intermediate is achieved in eight steps. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
913 |
Using Core-Shell Nanocatalysts to Unravel the Impact of Surface Structure on Catalytic Activity:Williams, Benjamin Parker January 2020 (has links)
Thesis advisor: Udayan Mohanty / The high surface area and atomic-level tunability offered by nanoparticles has defined their promise as heterogeneous catalysts. While initial studies began with nanoparticles of a single metal assuming thermodynamic shapes, modern work has focused on using nanoparticle composition and geometry to optimize nanocatalysts for a wide variety of reactions. Further optimization of these refined nanocatalysts remains difficult, however, as the factors that determine catalytic activity are intertwined and a fundamental understanding of each remains elusive. In this work, precise synthetic methods are used to tune a number of factors, including composition, strain, metal-to-metal charge transfer, atomic order, and surface faceting, and understand their impact on catalysis. The first chapter focuses on current achievements and challenges in the synthesis of intermetallic nanocatalysts, which offer long-range order that allows for total control of surface structure. A particular focus is given to the impact of the synthetic approach on the activity of the resulting nanoparticles. In the second chapter, multilayered Pd-(Ni-Pt)x nanoparticles serve as a controlled arena for the study of metallic mixing and order formation on the nanoscale. The third chapter controls the shell thickness of Au@PdPt core-alloyed shell nanoparticles on a nanometer scale to isolate strain at the nanoparticle surface. In the fourth chapter, the synthetic approaches of chapters two and three are applied to catalysis. In totality, the work presented here represents a brick in the foundation of understanding and exploiting structure-function relationships on the nanoscale, with an eye toward the rational design of tailored nanocatalysts. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
914 |
Using the Transient IR Spectroscopy to Elucidate Reaction Mechanisms in Visible Light Photoredox Catalysis:Yang, Jingchen January 2020 (has links)
Thesis advisor: Matthias M. Waegele / Studying the visible light-driven photoredox catalysis coupled with transition-metal complexes is of overriding importance in the development of synthetic strategy. Comparing to conventional thermal catalysis, reactions catalyzed and/ or initiated by photon energy are not only attractive for establishing a more sustainable system, but also for their unique reactivity that has previously been inaccessible. However, one issue draws our attention is that such photoredox catalytic schemes often suffer from a limited substrate scope. To develop more efficient and effective synthetic strategies applicable to broader range of substrates, it is of our interest to construct an functional and reliable instrument to identify the critical mechanistic steps that lead to low product yield. To this end, we designed a time-resolved visible-pump/ infrared-probe spectroscopic measurement technique to monitor reaction dynamics in-situ. Using our transmission infrared setup, we effectively demonstrated in-situ photoexcitation and decay process of Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate in deuterated acetonitrile. In addition, to optimize signal resolution, an electronic filter was installed in one of the data-collecting channels to allow for concurrent AC-coupled and DC-coupled signal recording. A series of chopper wheel experiments was conducted to assure the functionality of the system and reliability of obtained data. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
915 |
Preparation and characterization of noble metal-magnetite hybrid nano/micro composites towards drug delivery and heterogeneous catalysisLi, Wai Chung 22 June 2019 (has links)
This thesis describes the preparation and characterization of core-shell noble metal-magnetite hybrid hollow nanocomposites utilizing hierarchical architecture. The hollow magnetite (hFe3O4) nanoparticles were prepared by hydrothermal method, forming the cavity via Oswald ripening. Further surface modifications involved both inorganic and organic coatings, conferring the intracellular drug delivery ability and the catalytic enhancement. In the first part, a series of hierarchical core-shell nanostructures flower-like hFe3O4@AlOOH was synthesized through solvothermal method and sol-gel process. The formation of cavity accessible hFe3O4@γ-AlOOH was achieved using silica-templated solvothermal treatment where the Kirkendall effect was observed. The morphologies of the as-prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). Then, the nano-encapsulation of platinum drug using hollow magnetite and its derivatives, has been developed with improved loading efficiency via co-solvent system. A dimethylformamide/water co-solvent system was found to be the most efficient system to encapsulate water-insoluble cisplatin. The platinum content was further quantitatively and qualitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and FTIR spectroscopy. The enhancement of loading efficiency could be driven by emulsification due to the diffusion of hydrophobic cisplatin into the hollow cavity of iron oxide nanoparticles. By incorporating water, the loading efficiency of hFe3O4 and hFe3O4@γ-AlOOH increased from 1-2% to 27% and from 6% to 54%, respectively. The grafting of cisplatin on AlOOH nanoflakes might account for the high loading efficiency of flower-like hFe3O4@AlOOH. As a complement to naked hFe3O4, a cell-penetrating poly(disulfide)s (CPD)-decorated hollow iron oxide nanoparticle was synthesized by immobilizing both cysteine and MPTMS as an initiator, followed by in situ polymerization to form hFe3O4-Cys-CPD-CONH2 and hFe3O4-MPS-CPD-CONH2. The morphologies were characterized by TEM/energy-dispersive X-ray spectroscopy (TEM/EDX) and the compositions of the as-prepared iron oxide nanocomposites were characterized by TGA, FTIR and X-ray photoelectron spectroscopy (XPS) and ICP-MS. The CPD coating not only serve as a protective layer, but also prevent the encapsulated cisplatin from a premature release. The hFe3O4-MPS-CPD-CONH2 exhibit promising features for the intracellular delivery of cisplatin, demonstrating a glutathione (GSH)-responsive drug release. Comparing with other hFe3O4 nanoparticles, an enhancement of cellular uptake of hFe3O4-MPS-CPD-CONH2 could be observed by optical microscope, showing rapid accumulation of the hFe3O4-MPS-CPD-CONH2 nanocomposites in the primary human renal proximal tubular epithelial cells (HRPTEpiCs) cell in 2 h. At 24 h, hFe3O4 (F), hFe3O4-MPS (FS) and hFe3O4-MPS-CPD-CONH2 (FSC) together with cisplatin treatment did not cause any significant cytotoxicity to the cells when the particle concentration is less than 10 µg/mL. Interestingly, FSCC showed a certain extent of toxicity with increasing Fe and Pt concentration along with the treated time. It may suggest that the hFe3O4-MPS-CPD-CONH2 nanoparticle, as a cisplatin carrier, could enhance the drug efficiency by increasing cellular uptake of the nanoparticles in HRPTEpiCs together with the boosted cytotoxicity. Based on these data, cisplatin- hFe3O4-MPS-CPD-CONH2 (FSCC) treatments with the concentration less than 20 µg/mL and duration no more than 24 h could maintain around 70% of the cell viability of the HRPTEpiCs. The hypothesis, at which CPD serves as an efficient carrier for intracellular cisplatin delivery, could be confirmed by both microscopic images and the cell viability test. In the second part, a series of Au/Fe3O4 hybrid nanocomposites was prepared to investigate their catalytic efficiencies using 4-nitrophenol reduction as a model system. The flower-like hFe3O4@γ-AlOOH@SiO2-NH2@Au was prepared by using protonated ammonium on hFe3O4@γ-AlOOH@SiO2-NH2 to entangle gold nanoparticles (AuNPs) via electrostatic attraction. In comparison to numerous of catalytic studies, the turnover frequency (TOF) of hFe3O4@γ-AlOOH@SiO2-NH2@Au shows a superior conversion rate up to 7.57 min-1 (4-nitrophenol per Au per min) for the 4-nitrophenol using sodium borohydride as a reductant. A rapid conversion of 4-nitrohpenol was observed using flower like composites that converted the 4-nitrophenol within 2 min. Our result suggests that silica residue hinders the reduction rate of the 4-nitrophenol. A significant deviation from pseudo first order was observed for densely AuNPs-functionalized nanoflower system, hFe3O4@γ-AlOOH@SiO2-NH2@Au2X, which is different from most of the 4-nitrophenol reductions reported in literature. The hFe3O4@γ-AlOOH@SiO2-NH2@Au also demonstrates catalytic activity when heated up to 800 °C before reduction. The recyclability was examined using magnetically recycled hFe3O4@γ-AlOOH@SiO2-NH2@Au, which showed insignificant decrease in the catalytic efficiency. To prove the concept, platinum nanoparticles (PtNPs) immobilized hFe3O4@γ-AlOOH@SiO2-NH2@Pt and hFe3O4@γ-AlOOH@SiO2-NH2@Pt/Au were also prepared via electrostatic attraction to verify the feasibility of endowing modular functionality via post modification.
|
916 |
Iron and Nickel Hydride Complexes Stabilized by Pyrrole-Based LigandsCollett, Joel 25 May 2022 (has links)
No description available.
|
917 |
Enantioselective Transformations of α- and β-Amino C-H Bonds Promoted by Cooperative Actions of Achiral and Chiral Lewis Acid Catalysts:Chang, Yejin January 2021 (has links)
Thesis advisor: Masayuki Wasa / Thesis advisor: Amir H. Hoveyda / This dissertation describes the development of cooperative catalyst systems for the regio- and enantio-selective α- and β-amino C-H functionalization of N-alkylamines, inspired by the concepts of frustrated Lewis pairs (FLPs). Prior to this dissertation research, the development of effective and broadly applicable catalytic protocol to transform amino C-H bonds with high enantioselectivity remained as a formidable problem. In Chapter 1, the recent advances in the field of amino C-H functionalization through hydride transfer process that served as intellectual foundations for this dissertation research is presented. As highlighted in the first chapter, key challenges of amino C-H functionalization are: (1) unreactive nature of α, β- and/or γ-amino C-H bonds, (2) requirement for the use of precious metal-based catalysts and external oxidants under acidic/basic and harsh conditions, (3) use of directing groups for regioselectivity, and (4) poor functional group tolerance. Inspired by the unique capability of FLPs to activate otherwise unreactive molecules while disfavoring undesirable acid-base complexation, we have developed a protocol for enantioselective α-amino C-H functionalization of N-alkylamines, where chiral and achiral Lewis acid catalysts work cooperatively (Chapter 2). The application of the cooperative catalyst system comprising of B(C6F5)3, a chiral Lewis acid, and a Brønsted base to the enantioselective β-amino C-H functionalization is described in Chapter 3. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
918 |
Nickel Catalysis and Coordination Chemistry: Synthesis, Reactivity and Ligand Dynamics of Ni SNS Thiolate ComplexesAlbkuri, Yahya 16 July 2021 (has links)
Different metals and metal complexes have been used as catalysts in many industries such as commodity petrochemicals, fine and specialty chemicals, polymers, environmental services, agrochemicals and pharmaceuticals. Although these catalysts allow for increased reaction rates and selectivity, they can also be toxic, expensive and of limited supply (cf. Pt group metals). This has led researchers to the intensive study of first row metal catalysts, with nickel standing out as the most widely studied to date. As found for other first row metal catalysts, nickel’s easy access to oxidation states 0-3 allows for a number of different one- and two-electron mechanisms and novel transformations. In Chapter 2 we use a phosphine-free, tridentate N,N,N ligand to generate an active catalyst for the C-N cross-coupling reaction of aryl halides with amines. The catalyst demonstrated excellent turnover numbers (up to 484) for the amination reactions that are proposed to proceed through a Ni(I)-Ni(III) cycle. In Chapter 3 we investigate the Ni coordination chemistry of a biomimetic SNS thiolate ligand. Protonation of the Ni bis(thiolate) complex, Ni(-SNS)2, removes one SNS ligand, affording crystals of a thiolate-bridged dimer dication, {[Ni(--SNS)]2}2+ that exhibits unique anionic tridentate ligand dynamics. Dissolving these crystals, even in weakly-coordinating solvents such as dichloromethane, gives a mixture of ‘naked’ Ni2+ and paramagnetic, trinuclear {[Ni(--SNS)2]2Ni}2+. Although this equilibrium lies far to the right (no diamagnetic dication visible in NMR), addition of ancillary ligands proceeds smoothly to provide several mono- and dinuclear Ni thiolate products, [Ni-SNS)L]n – potential bifunctional catalysts for further studies. In Chapter 4 we demonstrate using chemical and electrochemical techniques that one-electron reduction of Ni(-SNS)2 triggers quantitative imine C-C bond coupling, forming [Ni(S2N2)]- with a redox-active ligand. Spectroelectrochemical studies indicated reversible oxidation and reduction steps give three stable redox states, ([Ni(S2N2)]0/-/2-), that were characterized by NMR, EPR and UV-Vis spectroscopy, X-ray diffraction and computational chemistry. While the Ni(0) dianion (and not the Ni(I) anion) reacted reversibly with phenol and carbon dioxide, results from Chapter 5 showed that reactions with strong electron-acceptor fluoroalkenes proceeded more cleanly with the Ni(I) anion. The latter reactions afforded a mixture of fluoroalkenyl and fluoroalkyl products resulting from C-F bond activation and electron transfer/H atom abstraction, respectively. In Chapter 6 we discuss our results in the context of the current state of the art and suggest some avenues for future development.
|
919 |
Synthesis of Carbocycles Using Coinage Metal Catalysis and Formal Synthesis of (±)-MorphineBrousseau, Julie 20 August 2020 (has links)
Coinage metals such as copper, silver and gold have captivated mankind with their desirable qualities and social value. Recently, these metals have peaked the interests of scientists, where organic chemists have used them extensively in the homogenous catalysis of organic transformations. In our laboratory, we exploited their π-Lewis acidic properties to activate alkyne to induce intramolecular cyclization of nucleophilic enol ethers. We discovered that modulating the steric and electronic profiles of the ancillary ligand on the cationic metal complexes allowed for the regioselective control of such reactions. During the exploration of the substrate dependency of these transformations, we discovered that unsubstituted alkynes undergo a 6-endo-dig/acetalization/Prins reaction cascade in the presence of a silver salt such as [(BrettPhos)Ag(MeCN)]SbF6, resulting in the formation of highly strained polycycles. We have demonstrated that the formation of these products is initiated by a selective 6-endo-dig cyclization. Further mechanistic studies suggested that the reaction may occur through silver dual catalysis using deuterium-labelling experiments, however, single activation of the starting material would lead to the same product and thus both mechanisms were proposed. The further reactivity of these interesting polycyclic products was also explored. Total synthesis of natural products is often referred to as an art, as it defines the boundaries of organic chemistry. In our laboratory, we have always been interested in the challenge of ingeniously building architecturally complex molecules. With the development of optimized conditions for the selective formation of decaline cores from silylenol ethers, the application of this methodology to the synthesis of teucrin A was sought. Our synthetic approach is highlighted by a sequential Diels-Alder/6-endo-dig cyclization reaction to rapidly assemble the clerodane diterpenoid framework of the natural product. To that end, the synthesis of the target utilized a strategy featuring a Diels-Alder reaction between an exocyclic allene and a silyl enolether, which proceeded in 59% yield at 110°C with a diasteomer ratio of 3:1. Unfortunately, attempts to induce the [4+2] cycloaddition using Lewis acids that were vital to the proposed synthetic route led to either no conversion or hydrolysis of starting material. Since this key step proved challenging, alternative synthetic pathways are currently being investigated in our group. Since the elucidation of its molecular structure by Robinson in 1925, morphine has received tremendous attention from the synthetic community. Indeed, about 50 formal and total syntheses of morphinans have been reported since the original synthesis by Gate in 1952. Herein, the synthetic efforts achieving a 9-step formal synthesis of (±)-morphine from readily available starting materials such as o-vanillin is presented. This synthesis features the quick assembly of the phenanthrofuran framework of the natural product in only five steps. The tetracyclic intermediate was synthetized through the careful orchestration of a Diels-Alder/elimination/deprotection sequence as well as a telescopic Claisen rearrangement/Friedel-Crafts alkylation. Subsequent strategic functional group manipulations allowed us to reach the advanced compound in four more steps and thus intercepting a known intermediate, which required two additional chemical transformations to form morphine. Overall, the work presented in this thesis represents the development of innovative methods for the creative disconnection of natural products. These advancements promote the rapid assembly of molecular cores found in many bioactive molecules.
|
920 |
Synthesis, development and characterisation of dehydrated castor oil poly (glyceryl phthalate) alkyd resinsNzeru, Arnold. January 1994 (has links)
A Dissertation Submitted to the Faculty of Science, University of the
Witwatersrand, Johannesburg, in fulfillment of the requirements for the
Degree of Master of Science in Polymer Chemistry. / The dissertation studies the synthesis, formulation development, crosslinking
and spectral characterisation of dehydrated castor oil poly(glyceryl
phthalate) alkyd resins for use as air-dry surface coating vehicles.
Synthesis of alkyd resins involves simultaneous dehydration, alcoholysis
and polyesterification reactions. Dehydration of castor oil is achieved in situ
under phthalic anhydride catalysis. Alcoholysis of dehydrated castor oil by
glycerol is also achieved in situ to form predominantly the monoglyceride.
Polyesterification of the resultant mono- and diglycerides is realised through
interaction with phthalic anhydride. The reaction is carried out at 280°C for
3 hours and at 225°C for 2 hours under azeotropic distillation with xylene.
The parent poly(glyceryl phthalate) alkyd resin is synthesized by reaction of
castor oil, glycerol and phthalic anhydride to a predetermined acid value.
Formulation development experiments were carried out to study the effect
of variations in the dibasic acid to polyol/oil and polyol to oil ratios on alkyd
resin properties. Model formulations exhibiting the best alkyd performance
were developed. Predictive model formulation equations were derived from
model formulation data and their limits of reliability and applicability
established. The formulation of water soluble alkyd resins is modified to
introduce pendant carboxylic acid groups along the polymer skeleton. Water
solubility is achieved by neutralisation of the residual pendant carboxylic
acid groups by 'fugitive' amines to yield water soluble alkyd soaps. The
effect of variations in the nature and level of incorporation of amine is
investigated. Alkyd resin solubilisation and resin acidity guide formulae were
studied and developed.
Cross-linking chemistry of alkyd resins, both in the reactor (gelation) and on
application (film formation) is investigated. Gelation manifested itself in two
different forms, thermoplastic and thermosetting. An important alkyd
constant, K, was established as an indispensable tool in control of
premature gelation and in the prediction of resin drying characteristics.
Autooxidation and solvent evaporation are the two competing curing
mechanisms encountered in film formation. The nature and influence of
each curing mechanism on the rate of cure and film characteristics is
highlighted. Catalysis experiments were conducted with metallic driers (Co2
Mn2 and Pb2} to bring the rate of drying of resin films to economically
feasible limits and catalyst addition levels were established.
New spectral characterisation techniques based on Fourier Transform
Infrared spectroscopy were investigated. An extensive study was carried out
on FT IR spectral data to establish qualitative and quantitative relationships
between transmission peak ratios and alkyd resin composition. Series
dependent and series independent correlation equations, useful in
quantifying alkyd resin components were derived. A new FT IR
spectroanalytic characterisation method for dibasic acids is proposed. The
method, if adopted, affords both qualitative and quantitative characterisation
of the dibasic acid component in the alkyd resin matrix and it is envisaged
the technique will supersede conventional methods in terms of speed and
simplicity.' / Andrew Chakane 2021
|
Page generated in 0.0886 seconds