• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon Dioxide as a Benign Solvent for Homogeneous Catalyst Recovery and Recycle

Jones, Rebecca S. 19 July 2005 (has links)
We have successfully investigated the use of CO2 as a miscibility switch to create an environment in which we can run a homogeneously catalyzed reaction while maintaining a heterogeneous separation. We explored the use of this technique with fluorous biphasic systems, a fluorous solid support, and aqueous biphasic systems. In the case of the fluorous systems, CO2 was added to induce solubility of the fluorous catalyst. When the reaction was completed, CO2 was vented and the system returned to a biphasic state, making the separation easy. For the aqueous biphasic systems, the organic phase is chosen such that it is fully miscible with water at ambient conditions. Examples include acetonitrile, THF, and dioxane. The addition of CO2 reduces the polarity of the solvent and causes a phase split. The recovery of the water-soluble catalyst is once again heterogeneous. The application to aqueous biphasic systems is the most exciting studied. Aqueous biphasic systems are used industrially in the hydroformylation of propylene. With our technique, these systems can be extended to more hydrophobic substrates. We have shown a rate increase of 65 fold and 99% product recovery at modest pressures for the hydroformylation of 1-octene. These aqueous biphasic systems also show much promise in the arena of enzyme catalyzed reactions. We can create an environment in which the enzyme kinetics will no longer be mass transfer limited.
2

Reactions and Separations in Tunable Solvents

Thomas, Colin A. 20 October 2006 (has links)
The work in this thesis couples reactions with separations through the use of switchable and tunable solvents. Tunable solvents are mixed solvents which can be easily altered to afford conditions optimal for reaction or separation. Switchable solvents are solvents that can be switched when desired to alter their properties affording conditions suitable for separation. Other studies are of the reaction of CO2 with the amidine base DBU, and an NMR study of solvent-to-solute nuclear Overhauser effects. These examples constitute a marriage of reaction environment with separation environment, significantly, to the benefit of both.

Page generated in 0.0525 seconds