Spelling suggestions: "subject:"catcher dearing"" "subject:"catcher clearing""
1 |
A Nonlinear Transient Approach for Morton Synchronous Rotordynamic Instability and Catcher Bearing Life PredictionsLee, Jung Gu 2012 May 1900 (has links)
This dissertation deals with three research topics; i) the catcher bearings life prediction method, ii) the Morton effect, and iii) the two dimensional modified Reynolds equation.
Firstly, catcher bearings (CB) are an essential component for rotating machine with active magnetic bearings (AMBs) suspensions. The CB's role is to protect the magnetic bearing and other close clearance component in the event of an AMB failure. The contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, and balls are calculated, using a nonlinear ball bearing model with thermal growth, during the rotor drop event. Fatigue life of the CB in terms of the number of drop occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm to the sub/surface shear stress-time history. Numerical simulations including high fidelity bearing models and a Timoshenko beam finite element rotor model show that CB life is dramatically reduced when high-speed backward whirl occurs.
Secondly, the theoretical models and simulation results about the synchronous thermal instability phenomenon known as Morton Effect is presented in this dissertation. A transient analysis of the rotor supported by tilting pad journal bearing is performed to obtain asymmetric temperature distribution of the journal by solving variable viscosity Reynolds equation, energy equation, heat conduction equation, and equations of motion for rotor. The tilting pad bearing is fully nonlinear model. In addition, thermal mode approach and staggered integration scheme are utilized in order to reduce computation time. The simulation results indicate that the temperature of the journal varies sinusoidally along the circumferential direction and linearly across the diameter, and the vibration envelope increased and decreased, which considers as a limit cycle that is stable oscillation of the envelope of the amplitude of synchronous vibration.
Thirdly, the Reynolds equation plays an important role to predict pressure distribution in the fluid film for the fluid film bearing analysis. One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. In elastohydrodynamic lubrication (EHL) which the lubricant is subjected to extremely high pressure, however, the pressure independent viscosity assumption should be reconsidered. With considering pressure-dependent viscosity, the 2D modified Reynolds equation is derived in this study. The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the plain journal bearing and ball bearing cases. The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations. / PDF file replaced 10-21-2012 at the request of the Thesis Office.
|
2 |
Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van RensburgVan Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised.
The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl.
A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method.
The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined.
The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data.
The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event.
The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large.
Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.
|
3 |
Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van RensburgVan Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised.
The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl.
A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method.
The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined.
The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data.
The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event.
The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large.
Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.
|
Page generated in 0.0902 seconds