• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental study of relative structural fire behaviour and robustness of different types of steel joint in restrained steel frames

Wang, Y.C., Dai, Xianghe, Bailey, C.G. 08 March 2011 (has links)
No / This paper describes the experimental results of ten fire tests on medium-scale restrained steel sub-frames to investigate the relative behaviour and robustness of different types of steel joint in steel framed structures in fire. The ten fire tests were designed to investigate the effects of two column sizes (simulating two different levels of axial restraint to the connected beam) and five different types of joint, including fin plate, web cleat, flush endplate, flexible endplate and extended endplate connections. Each test frame, in the form of “rugby goalpost” consisting of one beam and two columns, was connected through two identical beam to column joints. All the steelwork was unprotected except for the top flange of the beam which was protected to simulate the effect of a concrete slab in reducing the beam top flange temperature. The column ends were restrained to examine the effects of axial restraint on the beam and the joints. This paper presents the observations of structural fire behaviour, including joint failure modes and beam limiting temperatures, the development of deflections at beam middle span and axial forces in the joints at elevated temperatures. The main conclusions are: (1) failure (fracture) was observed only in joints when the beam was in catenary action and a variety of joint failure modes were observed which provides valuable data in understanding joint behaviour; (2) the medium-scale steel beams were able to undergo very large deflections View the MathML source without failure; (3) the specimens with stronger connections such as extended endplate reached higher than their limiting temperatures, defined as the beam bottom flange temperature at middle span at which the axial load in the beam returned to zero. But the difference in beam limiting temperatures using different types of joint is small, less than 50 °C; also the column size had little effect (less than 30 °C) on the beam limiting temperature; (4) the beams connected to the larger column experienced less deflections, but higher axial force due to the higher axial restraint to the beam, which led to fracture of the joint components in these tests; in contrast, the lighter columns visibly deformed and formed plastic hinges at the joints, but there was little evidence of connection fracture in the test frames using the light columns; (5) the web cleat connection appears to have the best performance.
2

Whole range behaviour of restrained reinforced concrete beams and frames in fire

Albrifkani, Sherwan January 2017 (has links)
This thesis presents the results of a numerical investigation of the whole range, large deflection behaviour of axially and rotationally restrained RC beams and interactions between beams and columns in RC frame structures exposed to fire. The dynamic explicit time integration algorithm implemented in the general finite element package ABAQUS/Explicit solver was used so as to overcome various modelling challenges including temporary instability, local failure of materials, non-convergence and long simulation time. Either load factoring or mass scaling may be used to speed up the simulation process. Validity of the proposed simulation model was checked by comparison of simulation results against relevant test results of restrained RC beams at ambient temperature and in fire. The validated ABAQUS/Explicit model was then used to conduct a comprehensive study of the effects of different levels of axial and rotational restraints on the whole range behaviour of RC beams in fire, including combined bending and compression due to restrained thermal expansion, bending failure, transition from compression to tension when catenary action develops and complete fracture of reinforcement at ultimate failure. The numerical results show that different bending failure modes (middle span sagging failure, end hogging failure due to fracture of tensile reinforcement, end hogging failure due to concrete crushing) can occur under different levels of boundary restraints. Furthermore, release of a large amount of energy during the rapid transition phase from compression to tension in a beam prevents formation of a three hinge mechanism in the beam under bending. The numerical results have also revealed that reliable catenary action develops at large deflections following bending failure only if bending failure is governed by compressive failure of concrete at the end supports whereby a continuous tension path in the beam can develop in the top reinforcement. To allow fire engineering practice to take into consideration the complex restrained RC beam behaviour in fire, a simplified calculation method has been developed and validated against the numerical simulation results. The proposed method is based on sectional analysis and meets the requirements of strain compatibility and force equilibrium. The validation study results have shown that the simplified method can satisfactorily predict the various key quantities of restrained beam axial force and beam deflection-fire exposure time relationships, with the simplified method generally giving results on the safe side. The validated explicit finite element model in ABAQUS was also used to investigate structural interactions between beams and columns within an RC frame structure with different fire exposure scenarios. When fire exposure involves beams and columns located in edge bays of a frame, catenary action cannot develop. Also due to thermal expansion of the connected beam, additional bending moments can generate in the columns. Furthermore, very large hogging moments can be induced at the beam end connected to the internal bay. It is necessary to include these bending moments when designing beams and columns under such fire conditions. Catenary action can develop in interior beams of the frame when fire exposure is in interior bays where the beams have high degrees of axial restraint.
3

Structural response of steel and composite building frames further to an impact leading to the loss of a column.

Luu Nguyen Nam, Hai 15 October 2009 (has links)
See appended files.
4

Robustness of composite framed structures in fire

Beshir, Moustafa January 2016 (has links)
This thesis presents the results of a research study to investigate the behaviour of axially restrained composite beams at ambient and elevated temperatures, and how composite beams and their connections contribute to the robustness of composite framed structures in fire. The commercial finite element analysis package (ABAQUS, 2010) was used to develop the numerical simulation models. This research includes the following four main parts: (1) validation of the simulation model; (2) behaviour of axially restrained composite beams with partial shear interaction at ambient and elevated temperatures; (3) behaviour of composite beams with realistic connections at elevated temperatures and methods of increasing composite beam survival temperatures; and (4) response and robustness of composite frame structures with different extents of damage at elevated temperatures. Based on the results of composite beams, it was found that the survival of axially restrained beams is dominated by the development of catenary action. By utilising catenary action, it is possible for composite beams to develop load carrying capacity significantly above that based on bending resistance. During the development of catenary action, the compression force in the concrete flange of the composite beam decreases, thus reducing the forces in the shear connectors. As a result, the behaviour of shear connector failures ceases to be an issue during the catenary action stage. The results further show that, the load carrying capacities/survival temperatures of composite beams increase by increasing the level of axial restraint up to a certain limit and then decrease at higher levels. Typical realistic composite structures can provide composite beams with sufficient axial restraint to develop catenary action. For detailed composite beams with composite connections, three different beam sizes were investigated using flushed and extended end plate connections with different amounts of slab reinforcement, different load ratios and different bolt sizes. It has been found that the most important method to increase the survival time of composite beams is to use extended end plate connections with sufficient top and bottom reinforcement meshes in the concrete slab, i.e. increasing the amount of slab reinforcement is more beneficial than increasing the bolt size or the number of bolts. Based on the results of modelling a four bay (9 m each, two storey, 4 m high) composite frame with different extents of fire damage to different members, it was found that whenever any of the columns failed, progressive collapse of the frame would occur. Therefore, damages to columns should be prevented or the columns should be designed and constructed to allow for possible damage. If the beams are damaged, it is still possible for the damaged frame to achieve the reference fire resistance time of the undamaged structure (which is used as the criterion to accept that the damaged frame has sufficient robustness) by developing catenary action in the damaged beam. For this to happen, the columns should be designed to resist the catenary tensile force (tying force) in the beams, in addition to the compressive force.
5

Robustness of reinforced concrete framed building at elevated temperatures

Lee, Seungjea January 2016 (has links)
This thesis presents the results of a research programme to investigate the behaviour and robustness of reinforced concrete (RC) frames in fire. The research was carried out through numerical simulations using the commercial finite element analysis package TNO DIANA. The main focus of the project is the large deflection behaviour of restrained reinforced concrete beams, in particular the development of catenary action, because this behaviour is the most important factor that influences the frame response under accidental loading. This research includes four main parts as follows: (1) validation of the simulation model; (2) behaviour of axially and rotationally restrained RC beams at elevated temperatures; (3) derivation of an analytical method to estimate the key quantities of restrained RC beam behaviour at elevated temperatures; (4) response and robustness of RC frame structures with different extents of damage at elevated temperatures. The analytical method has been developed to estimate the following three quantities: when the axial compression force in the restrained beam reaches the maximum; when the RC beams reach bending limits (axial force = 0) and when the beams finally fail. To estimate the time to failure, which is initiated by the fracture of reinforcement steel at the catenary action stage, a regression equation is proposed to calculate the maximum deflections of RC beams, based on an analysis of the reinforcement steel strain distributions at failure for a large number of parametric study results. A comparison between the analytical and simulation results indicates that the analytical method gives reasonably good approximations to the numerical simulation results. Based on the frame simulation results, it has been found that if a member is completely removed from the structure, the structure is unlikely to be able to develop an alternative load carrying mechanism to ensure robustness of the structure. This problem is particularly severe when a corner column is removed. However, it is possible for frames with partially damaged columns to achieve the required robustness in fire, provided the columns still have sufficient resistance to allow the beams to develop some catenary action. This may be possible if the columns are designed as simply supported columns, but have some reserves of strength in the frame due to continuity. Merely increasing the reinforcement steel area or ductility (which is difficult to do) would not be sufficient. However, increasing the cover thickness of the reinforcement steel to slow down the temperature increase is necessary.
6

Robustness of connections to concrete-filled steel tubular columns under fire during heating and cooling

Elsawaf, Sherif Ahmed Elkarim Ibrahim Soliman January 2012 (has links)
Joint behaviour in fire is currently one of the most important topics of research in structural fire resistance. The collapse of World Trade Center buildings and the results of the Cardington full-scale eight storey steel framed building fire tests in the UK have demonstrated that steel joints are particularly vulnerable during the heating and cooling phases of fire. The main purpose of this research is to develop robust joints to CFT columns that are capable of providing very high rotational and tying resistances to make it possible for the connected beam to fully develop catenary action during the heating phase of fire attack and to retain integrity during the cooling phase of fire attack. This research employed the general finite element software ABAQUS to numerically model the behaviour of restrained structural subassemblies of steel beam to concrete filled tubular (CFT) columns and their joints in fire. For validation, this research compared the simulation and test results for 10 fire tests previously conducted at the University of Manchester. It was envisaged that catenary action in the connected beams at very large deflections would play an important role in ensuring robustness of steel framed structures in fire. Therefore, it was vital that the numerical simulations could accurately predict the structural behaviour at very large deflections. In particular, the transitional behaviour of the beam from compression to catenary action presented tremendous difficulties in numerical simulations due to the extremely high rate of deflection increase. This thesis will explain the methodology of a suitable simulation method, by introducing a pseudo damping factor. The comparison between the FE and the experimental results demonstrates that the 3-D finite element model is able to successfully simulate the fire tests. The validated ABAQUS model was then applied to conduct a thorough set of numerical studies to investigate methods of improving the survival temperatures under heating in fire of steel beams to concrete filled tubular (CFT) columns using reverse channel connection. This study investigated five different joint types of reverse channel connection: extended endplate, flush endplate, flexible endplate, hybrid flush/flexible endplate and hybrid extended/flexible endplate. The connection details investigated include reverse channel web thickness, bolt diameter and grade, using fire-resistant (FR) steel for different joint components (reverse channel, end plate and bolts) and joint temperature control. The effects of changing the applied beam and column loads were also considered. It is concluded that by adopting some of the joint details to improve the joint tensile strength and deformation capacity, it is possible for the beams to develop substantial catenary action to survive very high temperatures. This thesis also explains the implications on fire resistant design of the connected columns in order to resist the additional catenary force in the beam. The validated numerical model was also used to perform extensive parametric studies on steel framed structures using concrete filled tubular (CFT) columns with flexible reverse channel connection and fin plate connection to find means of reducing the risk of structural failure during cooling. The results lead to the suggestion that in order to avoid connection fracture during cooling, the most effective and simplest method would be to reduce the limiting temperature of the connected beam by less than 50°C from the limiting temperature calculated without considering any axial force in the beam.
7

Numerical modelling of structural fire behaviour of restrained steel beam–column assemblies using typical joint types

Dai, Xianghe, Wang, Y.C., Bailey, C.G. 15 May 2010 (has links)
No / This paper presents the results of a simulation study of 10 fire tests on restrained steel beam–column assemblies using five different types of joints: fin plate, flexible endplate, flush endplate, web cleat and extended endplate. This paper will provide details of the simulation methodology for achieving numerical stability and faithful representation of detailed structural behaviour, and compare the simulation and experimental results, including joint failure modes, measured beam axial forces and beam mid-span deflections. Good agreement between ABAQUS simulations and experimental observations confirms that the finite element models developed through the ABAQUS/Standard solver are suitable for predicting the structural fire behaviour of restrained structural assemblies with realistic steel joints undergoing different phases of behaviour in fire, including restrained thermal expansion and catenary action in the beams. The validated model may be used to conduct numerical parametric studies to generate theoretical data to help develop detailed understanding of steel joint behaviour and their effects on robustness of steel framed structures in fire.
8

Behaviour of reinforced concrete frame structure against progressive collapse

Harry, Ofonime Akpan January 2018 (has links)
A structure subjected to extreme load due to explosion or human error may lead to progressive collapse. One of the direct methods specified by design guidelines for assessing progressive collapse is the Alternate Load Path method which involves removal of a structural member and analysing the structure to assess its potential of bridging over the removed member without collapse. The use of this method in assessing progressive collapse therefore requires that the vertical load resistance function of the bridging beam assembly, which for a typical laterally restrained reinforced concrete (RC) beams include flexural, compressive arching action and catenary action, be accurately predicted. In this thesis, a comprehensive study on a reliable prediction of the resistance function for the bridging RC beam assemblies is conducted, with a particular focus on a) the arching effect, and b) the catenary effect considering strength degradations. A critical analysis of the effect of axial restraint, flexural reinforcement ratio and span-depth ratio on compressive arching action are evaluated in quantitative terms. A more detailed theoretical model for the prediction of load-displacement behaviour of RC beam assemblies within the compressive arching response regime is presented. The proposed model takes into account the compounding effect of bending and arching from both the deformation and force points of view. Comparisons with experimental results show good agreement. Following the compressive arching action, catenary action can develop at a much larger displacement regime, and this action could help address collapse. A complete resistance function should adequately account for the catenary action as well as the arching effect. To this end, a generic catenary model which takes into consideration the strength degradation due to local failure events (e.g. rupture of bottom rebar or fracture of a steel weld) and the eventual failure limit is proposed. The application of the model in predicting the resistance function in beam assemblies with strength degradations is discussed. The validity of the proposed model is checked against predictions from finite element model and experimental tests. The result indicate that strength degradation can be accurately captured by the model. Finally, the above developed model framework is employed in investigative studies to demonstrate the application of the resistance functions in a dynamic analysis procedure, as well as the significance of the compressive arching effect and the catenary action in the progressive collapse resistance in different designs. The importance of an accurate prediction of the arching effect and the limiting displacement for the catenary action is highlighted.
9

Robustness in fire of steel framed structures with realistic connections

Chen, Lu January 2013 (has links)
Joints are the most critical elements in a steel framed structure. In most design guides or codes, the joints are assumed to a have higher fire resistance than the connected structural members because of the lower temperatures in the joints. However, in severe fire conditions, a connected beam's temperature may be higher than its limiting temperature and the beam may develop catenary action when the beam’s axial shortening from large deflections becomes greater than the beam’s thermal expansion. This beam catenary action force could fracture the joints, increasing the risk of progressive collapse. This research focuses on the interaction between joints and the connected steel beams and columns in steel framed structures in fire, including how the behaviour of a joint-beam assembly may be efficiently analyzed and how the joints may be constructed to achieve high degrees of catenary action. Three methods of simulating the joint behaviour in fire have been developed and implemented in the commercial finite element software ABAQUS. In the first modelling method, all structural members, including the connections, were simulated using detailed solid elements to enable detailed behaviour of the structure to be faithfully represented. In the second method, the columns were represented by conventional line (beam) elements, the joints were represented using springs (Connector Elements) based on the component based method, and the beam was modelled using solid elements. In the third method, the joints were modelled using springs as in the second method and the beam and columns were simulated using line (beam) elements. As expected, the detailed simulation method was extremely time-consuming, but was able to produce detailed and accurate results. The simulation results from the second and third methods contained some inaccuracies, but depending on the simulation objective, their simulation results may be acceptable. In particular, the third simulation method was very efficient, suitable for simulating complete frame structures under very large deflections in fire. The first method (detailed finite element method) was then used to investigate how to change the joint details to increase the survivability of restrained steel beams and beam-column assemblies at high temperatures since it enables detailed behaviour of the structure to be faithfully represented. It is found that by improving joint deformation capacity, in particular, using extended endplate connection with fire resistant bolts, very high temperatures can be resisted. The frame robustness in fire was investigated using the third simulation method to save computation time. The simulation structure was three-bay by three-floor and different scenarios of fire location, fire spread and initial structural damage were considered. The simulation results show that once failure of a column occurs, progressive collapse of the structure could be easily triggered and it would be rather futile to only enhance the joint capacity. Therefore, in addition to the measures of improving joint capacities (both rotation and strength), design of the affected columns should include consideration of the additional catenary forces from the connected beams and the increased effective lengths. Furthermore, the lateral bracing system should be ensured to provide the structure with lateral restraint.

Page generated in 0.0998 seconds