Spelling suggestions: "subject:"cathode LiFePO[indices inférieure 4]"" "subject:"kathode LiFePO[indices inférieure 4]""
1 |
Synthèse et caractérisation électrochimique de liquides ioniques à base de phosphonium pour les applications aux batteries au lithiumKwamou Kouayep, Bertrand Mirador January 2014 (has links)
Les besoins énergétiques de la population mondiale ne cessent de croître, cette croissance est beaucoup plus attribuée à la venue de nouveaux consommateurs des pays émergents. Les réserves de gisement de pétrole fossile, principale source d’énergie de notre civilisation ne suivant pas la demande, la recherche de nouvelles sources d’énergie ou compléments énergétiques de ceux classiques demeure un challenge important pour l’avenir de notre société. Les batteries au lithium demeurent une réponse dite énergie renouvelable pour la lutte que se livrent les pays du globe pour limiter l’échéance de la fin des énergies nécessaires à la survie de notre système économique. Cette batterie offre des performances énergétiques plus grandes que celle alcaline par exemple. Ce travail s’inscrit dans la lignée de l’amélioration continue de la technologie des batteries lithium- ion. Cette amélioration passe par l’optimisation des différentes composantes des piles au lithium comme les électrodes (anode et cathode) et les électrolytes (solvants et ion principal à base de lithium). Ainsi, ce travail comporte trois parties. Dans un premier temps, nous avons investigué de nouveaux solvants dits liquides ioniques à base de phosphonium, ces solvants étant tous des précurseurs respectifs de tri-n-buthylphosphine et tri-n-éthylphosphine (TBPhexTFSI, TBPmetTFSI, TBPhoxTFSI, TBPmetOetTFSI, TEPhexTFSI et TEPhoxTFSI, voir la liste des abréviations). Le choix de ces liquides ioniques à base de phosphonium a été fait dans l’optique de la recherche de ceux ayant les meilleures propriétés chimico-physiques et électrochimiques. De ce fait, les mesures de ces propriétés physico-chimiques comme leur conductivité, viscosité, stabilité thermique ont été effectuées. La supériorité des liquides à base de phosphonium ayant des cations à chaîne oxygénée sur ceux non oxygénées a été démontrée. La conductivité du TBPhoxTFSI respectivement supérieure à celle du TBPhexTFSI et la viscosité de TBPhoxTFSI est inférieure à celle du TBPhexTFSI). Cette étude a aussi démontré l’importance d’avoir des liquides ioniques de phosphonium à cation asymétrique de petite dimension pour bénéficier des meilleures propriétés chimico-physiques, notamment les conductivités des TEPhexTFSI et TEPhoxTFSI étant meilleures que celle du TBPhexTFSI et TBPhoxTFSI.
Les études électrochimiques, notamment la voltampérométrie cyclique à balayage, ont permis d’étudier les fenêtres de potentiel électrochimique de certains de ces liquides ioniques. Il a été démontré que les liquides ioniques ayant un cation à chaîne carbonylée asymétrique courte et non oxygénée ont des fenêtres de potentiel électrochimique plus large (respectivement 5 et 5,5V pour le TBPmetTFSI et TEPhexTFSI). Notre étude s’est basée seulement sur deux liquides ioniques ayant pour précurseur la tri-n-buthylphosphine : le TBPmetTFSI et le TBPhoxTFSI. Le choix de ces deux liquides ioniques de phosphonium découle aussi des études effectuées sur leurs propriétés chimico-physiques intéressantes.
Dans l’amélioration des composantes des batteries lithium-ion, la recherche des meilleures électrodes demeure aussi un enjeu stratégique important dans cette technologie. Les cathodes à plus grande capacité énergétique sont dans cette logique. Les cathodes des piles rechargeables au lithium sont composées de matériaux du type oxydes mixtes des métaux de transition. Un des facteurs importants du choix de ces matériaux est la diffusion rapide du lithium dans leur structure interne c’est-à-dire la vitesse des réactions d’intercalations et de désintercalations des ions de lithium pendant le fonctionnement de ces types de piles. Les matériaux dits à structure cristalline olivine type LiFePO[indice inférieur 4] ont eu une grande percée il y a environ 10 ans. De nos jours ils sont encore présents, mais de façon améliorée par l’ajout des additifs de carbone généralement dans un pourcentage de 7 à 10% en poids et prennent le nom de LiFePO[indice inférieur 4]/C. Nous avons ainsi réussi à synthétiser par approche sol-gel le LiFePO[indice inférieur 4]/C ; ce matériau a ensuite été caractérisé par diffraction à rayon-X, par microscope électronique à balayage (MEB) et comparé à ce matériau de LiFePO[indice inférieur 4] commercial de la compagnie MTI Corporation. Deux conditions expérimentales ont été utilisées pour les caractérisations électrochimiques de ces cathodes de LiFePO[indice inférieur 4] commercial et LiFePO[indice inférieur 4]/C, soit dans les électrolytes classiques 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol) et dans les électrolytes mixtes 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol.) + x TBPmetTFSI ou TBPhoxTFSI. Les voltampérogrammes cycliques obtenus dans ces conditions classiques et mixtes ont démontré que les liquides ioniques TBPmetTFSI et TBPhoxTFSI pouvaient être utilisés comme additifs aux solvants classiques jusqu’à des concentrations de 50% en volume de ceux classiques comme EC-DMC (3/7 vol.) tout en favorisant les processus d’intercalation et dedésintercalation du lithium durant le cycle de fonctionnement des batteries lithium-ion. La quasi-réversibilité des pics redox dans ces proportions des liquides ioniques est un indice de bon fonctionnement des batteries lithium-ion avec des électrolytes mixtes composés de solvants classiques et de liquides ioniques à base de phosphonium.
|
Page generated in 0.0895 seconds