• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pharmacokinetics of propylthio-benzimidazole anthelmintics : modulation of liver biotransformation in sheep and cattle

Lanusse, Carlos Edmundo January 1991 (has links)
The aim of this research was to determine the influence of route of administration, drug formulation and modified-liver metabolism on the pharmacokinetic and metabolic patterns of benzimidazole anthelmintics in ruminants. Both route of administration and formulation dramatically affected the bioconversion of netobimin (NTB) pro-drug, N-methoxycarbonyl-N$ sp prime$-(2-nitro-5-propylphenylthio)-${ rm N} sp{ prime prime}$-(2-ethyl sulphonic acid) guanidine, and the bioavailability and disposition kinetics of its active albendazole (ABZ) metabolites in both sheep and cattle. The efficacy of NTB conversion by the gastrointestinal (GI) microflora, was markedly lower after subcutaneous (SC) administration of NTB pro-drug compared with enteral administrations in both species. Although trisamine and zwitterion formulations of NTB were bioequivalent after SC treatment, the zwitterion suspension was two-fold more bioavailable in terms of ABZ metabolites, after oral administration to cattle. ABZ sulphoxide (ABZSO) and ABZ sulphone (ABZSO$ sb2$), the main metabolites found in plasma, were reversibly exchanged between plasma and GI compartments and concentrated in the abomasum. ABZ, ABZSO and ABZSO$ sb2$ were detected in the GI tract for 72 h post-NTB administration to cattle. In vitro, ABZ was oxidized into ABZSO and ABZSO$ sb2$ by liver microsomes and ruminal and ileal fluids. However, only ABZSO was reduced (back to ABZ) by these GI fluids. The rate of ABZ sulphoxidation by liver microsomes was significantly lower in cattle compared to sheep. However, while the oxidizing activity was greater in GI fluids of cattle, the reducing activity was prevalent in those of sheep. This was consistent with the higher ABZSO$ sb2$/ABZSO ratio and the markedly faster disposition of both metabolites in cattle compared to sheep. The co-administration of NTB with different oxidation-impairing compounds, largely methimazole (MTZ), in both species, resulted in an increased bioavailability and/o
2

Pharmacokinetics of propylthio-benzimidazole anthelmintics : modulation of liver biotransformation in sheep and cattle

Lanusse, Carlos Edmundo January 1991 (has links)
No description available.
3

Kill Livestock Pests

Roney, J. N., Lane, Al 03 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
4

Kill Livestock Pests

Roney, J. N., Lane, Al 03 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
5

Investigation of tick-borne pathogens resistance markers using next generation sequencing

Chigwada, Aubrey D. 07 1900 (has links)
No abstract or keywords provided in dissertation / Life and Consumer Sciences / M. Sc. (Life Sciences)
6

Sialotranscriptomics of the brown ear ticks, Rhipicephalus appendiculatus Neumann, 1901 and R. Zambeziensis Walker, Norval and Corwin, 1981, vectors of Corridor disease

De Castro, Minique Hilda 11 1900 (has links)
Text in English / Corridor disease is an economically important tick-borne disease of cattle in southern Africa. The disease is caused by Theileria parva and transmitted by the vectors, Rhipicephalus appendiculatus and R. zambeziensis. There is currently no vaccine to protect cattle against T. parva that is permitted in South Africa. To develop recombinant anti-tick vaccines against Corridor disease, comprehensive databases of genes expressed in the tick’s salivary glands are required. Therefore, in Chapters 2 and 3, mRNA from the salivary glands of R. appendiculatus and R. zambeziensis was sequenced and assembled using next generation sequencing technologies. Respectively, 12 761 and 13 584 non-redundant protein sequences were predicted from the sialotranscriptomes of R. appendiculatus and R. zambeziensis and uploaded to public sequence domains. This greatly expanded the number of sequences available for the two vectors, which will be invaluable resources for the selection of vaccine candidates in future. Further, in Chapter 3, differential gene expression analysis in R. zambeziensis revealed dynamic expression of secretory protein transcripts during feeding, suggestive of stringent transcriptional regulation of these proteins. Knowledge of these intricate expression profiles will further assist vaccine development in future. In Chapter 4, comparative sialotranscriptomic analyses were performed between R. appendiculatus and R. zambeziensis. The ticks have previously shown varying vector competence for T. parva and this chapter presents the search for correlates of this variance. Phylogenetic analyses were performed using these and other publically available tick transcriptomes, which indicated that R. appendiculatus and R. zambeziensis are closely related but distinct species. However, significant expression differences were observed between the two ticks, specifically of genes involved in tick immunity or pathogen transmission, signifying potential bioinformatic signatures of vector competence. Furthermore, nearly four thousand putative long non-coding RNAs (lncRNAs) were predicted in each of the two ticks. A large number of these showed differential expression and suggested a potential transcriptional regulatory function of lncRNA in tick blood feeding. LncRNAs are completely unexplored in ticks. Finally, in Chapter 5, concluding remarks are given on the potential impact the R. appendiculatus and R. zambeziensis sialotranscriptomes may have on future vaccine developments and some future research endeavours are discussed. / Life and Consumer Sciences / Ph. D. (Life Sciences)

Page generated in 0.0914 seconds