• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical solutions of Cauchy integral equations and applications

Cuminato, José Alberto January 1987 (has links)
This thesis investigates the polynomial collocation method for the numerical solution of Cauchy type integral equations and the use of those equations and the related numerical techniques to solve two practical problem in Acoustics and Aerodynamics. Chapters I and II include the basic background material required for the development of the main body of the thesis. Chapter I discusses a number of practical problems which can be modelled as a singular integral equations. In Chapter II the theory of those equations is given in great detail. In Chapter III the polynomial collocation method for singular integral equations with constant coefficients is presented. A particular set of collocation points, namely the zeros of the first kind Chebyshev polynomials, is shown to give uniform convergence of the numerical approximation for the cases of the index K = 0. 1. The convergence rate for this method is also given. All these results were obtained under slightly stronger assumptions than the minimum required for the existence of an exact solution. Chapter IV contains a generalization of the results in Chapter III to the case of variable coefficients. In Chapter V an example of a practical problem which results in a singular integral equation and which is successfully solved by the collocation method is described in substantial detail. This problem consists of the interaction of a sound wave with an elastic plate freely suspended in a fluid. It can be modelled by a system of two coupled boundary value problems - the Helmholtz equation and the beam equation. The collocation method is then compared with asymptotic results and a quadrature method due to Miller. In Chapter VI an efficient numerical method is developed for solving problems with discontinuous right-hand sides. Numerical comparison with other methods and possible extensions are also discussed.
2

Bidirectional and unidirectional spectral representations for the scalar wave equation

Koutoumbas, Anastasios M. 07 April 2009 (has links)
The Cauchy problem associated with the scalar wave equation in free space is used as a vehicle for a critical examination and assessment of the bidirectional and unidirectional spectral representations. These two novel methods for synthesizing wave signals are distinct from the superposition principle underlying the conventional Fourier method and they can effectively be used to derive a large class of localized solutions to the scalar wave equation. The bidirectional spectral representation is presented as an extension of Brittingham's ansatz and Ziolkowski's Focus Wave Mode spectral representations. On the other hand, the unidirectional spectral representation is motivated through a group-theoretic similarity reduction of the scalar wave equation. / Master of Science
3

The Cauchy problem for the Diffusive-Vlasov-Enskog equations

Lei, Peng 04 May 2006 (has links)
In order to better describe dense gases, a smooth attractive tail arising from a Coulomb-type potential is added to the hard core repulsion of the Enskog equation, along with a velocity diffusion. By choosing the diffusing term of Fokker-Planck type with or without dynamical friction forces. The Cauchy problem for the Diffusive-Vlasov-Poisson-Enskog equation (DVE) and the Cauchy problem for the Fokker-Planck-Vlasov-Poisson-Enskog equation (FPVE) are addressed. / Ph. D.
4

Strong traces for degenerate parabolic-hyperbolic equations and applications

Kwon, Young Sam 28 August 2008 (has links)
We consider bounded weak solutions u of a degenerate parabolic-hyperbolic equation defined in a subset [mathematical symbols]. We define strong notion of trace at the boundary [mathematical symbols] reached by L¹ convergence for a large class of functionals of u. Such functionals depend on the flux function of the degenerate parabolic-hyperbolic equation and on the boundary. We also prove the well-posedness of the entropy solution for scalar conservation laws with a strong boundary condition with the above trace result as applications. / text

Page generated in 0.0953 seconds