Spelling suggestions: "subject:"cavidades acoplada"" "subject:"cavidades acoplados""
1 |
Emaranhamento quântico entre átomos localizados em cavidades distintas / Quantum entanglement between atoms located in distinct cavitiesYabu-uti, Bruno Ferreira de Camargo, 1982- 31 August 2007 (has links)
Orientador: Jose Antonio Roversi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T01:48:12Z (GMT). No. of bitstreams: 1
Yabu-uti_BrunoFerreiradeCamargo_M.pdf: 1406553 bytes, checksum: 938ab0006a4b98ac2e95d69ce2f1f39f (MD5)
Previous issue date: 2007 / Resumo: Nessa dissertação de mestrado estudamos a dinâmica do emaranhamento entre dois átomos remotos localizados em cavidades distintas. O foco principal é a produção de estados maximamente emaranhados entre átomos de dois níveis em cavidades distintas e, em particular, acopladas.
Inicialmente apresentamos os principais conceitos da Teoria de Informação Quântica, aspectos qualitativos e quantitativos do emaranhamento quântico, em seguida partimos para o sistema físico proposto: átomos em cavidades. Apresentamos o modelo de Jaynes-Cummings (MJC) e uma breve análise do emaranhamento que surge da interação átomo-campo descrita por esse modelo. No sistema de duas cavidades desacopladas apresentamos como gerar emaranhamento entre átomos remotos de forma condicional.
É apresentado então o sistema formado por duas cavidades acopladas interagindo com átomos de dois níveis idênticos, fato que corresponde a constantes de acoplamento átomo-campo iguais (g1= g2). A interação àtomo-campo ainda é descrita pelo MJC já o sistema das cavidades acopladas pode ser modelado conforme a proposta de Zoubi et. al [1](para cavidades separadas por um meio físico a uma curta distância) ou pela proposta de Pellizzari [2](para cavidades conectadas por uma fibra ótica).
Para escolhas adequadas dos parâmetros relevantes em cada caso, a dinâmica dos dois sistemas é equivalente a interação dos áomos com um campo mono-modo. Em conseqüência da aparente simplicidade, investigamos a dinâmica do emaranhamento entre átomos distantes, incluindo a geração de estados maximamente emaranhados (essencial para o processamento de informação quântica, comunicação quântica [3] e computação quântica distribuída [4, 5] ) de forma determinística e sem a necessidade de uma interação indireta entre os modos das cavidades para gerar um estado inicial emaranhado compartilhado / Abstract: In this work, we study the dynamics of the entanglement between two remote atoms in distinct cavities. The main focus is the production of maximal entangled states between identical atoms of two levels in distinct cavities and, in particular, coupled cavities.
Initially we present the main concepts of the Theory of Quantum Information, qualitative and quantitative aspects of the quantum entanglement, after that we consider the physical system: atoms in cavities. We present the Jaynes-Cummings model (JCM) and make one brief analysis of the entan-glement that appears due to such atom-field interaction. In the system of two uncoupled cavities we present how to generate entanglement between remote atoms in conditional form.
We introduce the system formed by two coupled cavities interacting with identical atoms, fact that corresponds to identical coupling constant (g1= g2). The atom-field interaction is still described by the JCM and the system of coupled cavities can be modeled by the Zoubi et. al.¿s proposal [1] (for separate cavities for an environment for a short distance) or for the Pellizzari¿s proposal [2] (for cavities connected by a optical fiber).
For appropriate choices of parameters in each case, the dynamics of the two systems is equivalent to the interaction of atoms with a mono-mode field. Due to the apparent simplicity, we investigate the dynamics of the entanglement between distant atoms, including the generation of maximal entangled states (essential for the processing of quantum information, quantum communication [3] and distributed quantum computation [4,5] ) in determinist form and without necessity of an indirect interaction between the modes of the cavities to generate a shared entangled initial state / Mestrado / Física / Mestre em Física
|
2 |
[en] COUPLED-CAVITY FIBER-LASER / [pt] LASER À FIBRA COM CAVIDADES ACOPLADASEDUARDO THIESEN MAGALHAES COSTA 14 June 2004 (has links)
[pt] Neste trabalho, desenvolvemos um laser a fibra, monomodo
e de cavidades acopladas, cujo meio de ganho é uma Fibra
Dopada com Érbio. As duas cavidades, C1 e C2, foram
feitas no mesmo pedaço de fibra dopada, com a mesma
concentração de Érbio (Er) e mesmo índice de refração. A
Fibra Dopada com Érbio usada era também dopada com
Germânio (Ge), que aumenta a fotossensitividade da fibra.
Portanto, foi possível escrever Redes de Bragg na mesma
fibra para serem usadas como os espelhos da cavidade. A
configuração do laser consiste em três Redes de Bragg,
escritas no mesmo núcleo da fibra, centradas em 1532nm e
separadas por 30cm. As reflectividades das Redes de Bragg
eram de 95 por cento, 80 por cento e 60 por cento. Com essa configuração simples de
cavidades acopladas, conseguimos uma emissão laser
estável e monomodo. Será apresentado também um estudo
teórico para descrever o sistema. / [en] In this work, we developed a single mode coupled cavity
fiber laser, in which the gain medium is an Erbium Doped
Fiber. The two cavities, C1 and C2, were made in the same
piece of the doped fiber, with the same concentration of
Erbium (Er) and the same refraction index. The Erbium Doped
Fiber used was codoped with Germanium (Ge), which increases
the photosensitivity of the fiber. Therefore, it was
possible to write bragg Gratings in the same fiber to be
used as the cavity mirrors. The laser configuration
consists of three Bragg Gratings, written in the core of
the fiber, centered in 1532 nm and separated by 30cm. Ther
Bragg Grating reflectivities were 95 per cent, 80 per cent and 60 per cent. With
this simple configuration of coupled cavities, a stable,
single mode laser emission was achieved. A theoretical
study to describe the system will also be presented.
|
3 |
Transferência de estado quântico em sistemas de cavidades acopladasAlmeida, Guilherme Martins Alves de 20 January 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The prospect of simulating many-body quantum phenomena in coupled high-quality
optical cavities has attracted a lot of interest over the past few years. The major
advantages are twofold. First, this approach allows a high degree of control and
addressability of individual sites and, second, the composite nature of particles,
now involving mixed atomic and photonic excitations, namely polaritons, paves
the way to the realization of novel strongly correlated regimes of light and matter.
Despite being promising quantum simulators, cavity networks are also suited
platforms for distributed quantum information processing and quantum communication.
This thesis comprises two studies on coupled-cavity systems described by
the Jaynes-Cummings-Hubbard model. Particularly, here we introduce protocols
for quantum-state transfer and control in two different structures. The first study
deals with a one-dimensional coupled-cavity array where each cavity interacts with
a single atom. For a staggered pattern of inter-cavity couplings, a pair of field
normal modes, each bi-localized at the array ends, arises. A rich structure of dynamical
regimes can hence be addressed depending on which resonance condition
between the atom and field modes is set. We show that this can be harnessed to
carry out high-fidelity quantum-state transfer of photonic, atomic or polaritonic
states. Moreover, by partitioning the array into coupled modules of smaller length,
the QST time can be substantially shortened without significantly affecting the fidelity.
Further, we explore the dynamics of photonic and atomic excitations on an
Apollonian network under different atom-photon interaction regimes. We show that
the normal-mode spectrum spanned by this kind of network induces a non-trivial
propagation dynamics depending on connection degree among nodes, thereby being
useful for connecting different quantum-network users. Our results are driven
towards communication protocols in quantum networks comprised of light-matter
interfaces, thus paving the way for large-scale quantum information processing. / A perspectiva de simular fenômenos quânticos de sistemas de muitos corpos em cavidades
ópticas acopladas tem atraído bastante interesse nos últimos anos. O alto
grau de controle experimental e a natureza híbrida das partículas envolvidas, denominada
poláritons, fornecem uma nova direção no estudo de sistemas fortemente
correlacionados envolvendo interação entre luz e matéria. Além disso, redes de cavidades
são plataformas promissoras para processamento de informação quântica
em redes quânticas. Esta tese é constituída por dois estudos em redes de cavidades
acopladas descritas pelo modelo Jaynes-Cummings-Hubbard. Em particular,
desenvolvemos protocolos de transferência e controle de estados quânticos em duas
estruturas distintas. No primeiro estudo, consideramos uma cadeia unidimensional
de cavidades com um padrão alternado de acoplamento entre as cavidades, cada
uma interagindo com um átomo. Neste cenário, um par de modos normais do campo
eletromagnético torna-se fortemente localizado nas extremidades da cadeia. Dessa
forma, uma vasta estrutura de regimes dinâmicos pode ser manipulada dependendo
da ressonância entre os modos normais atômicos e do campo. Mostramos como
isso pode ser utilizado para realizar protocolos de transferência de estado quântico
envolvendo estados fotônicos, atômicos ou híbridos, com alta fidelidade. Também
discutimos como reduzir o tempo de transmissão de estados, sem comprometer sua
eficiência, particionando a cadeia em módulos. Em seguida, exploramos a dinâmica
de excitações atômicas e fotônicas em uma rede complexa de Apolônio considerando
diversos regimes de interação. Mostramos que o espectro de modos normais induzido
por este tipo de rede também oferece diversas alternativas no controle da dinâmica
do sistema. Além disso, a natureza complexa da rede de Apolônio induz uma dinâmica
de propagação não-trivial que depende do grau de conexão entre os sítios,
podendo ser assim aplicada para conectar diferentes usuários de uma rede quântica.
Nossos resultados contribuem para o desenvolvimento de protocolos de comunicação
em redes quânticas utilizando dispositivos de interface luz-matéria, abrindo assim
caminho para o processamento de informação quântica em larga escala.
|
Page generated in 0.0489 seconds