Spelling suggestions: "subject:"cavitation erosion weak"" "subject:"cavitation erosion were""
1 |
Análise dos mecanismos de dano de aços inoxidáveis austeníticos com elevado teor de nitrogênio durante desgaste erosivo por cavitação / Analysis of damaging mechanisms of high nitrogen austenitic stainless steel during cavitation erosion tests.Mesa Grajales, Dairo Hernan 20 July 2010 (has links)
Neste trabalho são estudados os mecanismos de desgaste, atuantes na escala do tamanho de grão (meso-escala), durante ensaios de cavitação vibratória, para diferentes amostras de aços inoxidáveis austeníticos ligados com nitrogênio. Amostras com teores superficiais de nitrogênio de aproximadamente 0, 9 % massa, 1, 4%massa e 20%massa, obtidas a partir do a¸co inoxidável dúplex UNS S31803, foram estudadas. As amostras do a¸co inoxidável duplex UNS S31803, com aproximadamente 0, 9 % N massa, foram obtidas por nitretação gasosa em alta temperatura (temperatura de nitretação entre 1050 e 1200 C) e consistiram em três grupos diferentes: amostras com nitrogênio em solução sólida e solubilizadas, amostras com precipitação de nitretos e amostras com nitrogênio em solução sólida e encruadas. Já as amostras com teor de nitrogênio próximo de 20 % N massa foram processadas por meio de nitretação a plasma na temperatura de 400 C, obtendo-se uma camada superficial de austenita expandida. As amostras de ensaio foram submetidas à caracterização de textura por difração de elétrons retroespalhados, EBSD, e posteriormente à cavitação vibratória em ´agua destilada. Os ensaios de cavitação foram periodicamente interrompidos com o intuito de estudar a deteriora¸cao das amostras por exame das mesmas no microscópio eletrônico de varredura, MEV, e por medidas de perda de massa. Quando comparadas com os aços inoxidáveis austeníticos convencionais (UNS S30403 solubilizado e UNS S31803 como recebido), sem adição de nitrogênio e livre de encruamento, as amostras estudadas apresentaram resistência ao desgaste por cavitação superior, quantificada tanto pelo tempo de incubação do dano com perda de massa quanto pela taxa máxima de perda de massa nos estágios avançados do dano. A taxa máxima de perda de massa para cada tipo de amostra estudada, com relação `a taxa máxima do material de comparação, o aço inoxidável convencional sem adição de nitrogênio e livre de encruamento (UNS S30403) solubilizado, foi de: amostras com precipitação de nitretos (318HTGN+Nit), 6,9 vezes menor; amostras com nitrogênio em solução sólida e solubilizadas (318HTGH+Sol) e laminadas e solubilizadas (318HTGN+Lam+Sol), 26,8 e 25 vezes menor, respectivamente; amostras com nitrogênio em solução sólida e encruadas (318HTGN+Enc) 145 vezes menor; e amostras com camada superficial de austenita expandida (obtidas por nitretação a plasma), (318HTGN+Plas e 304LSol+Plas) 290 e 1,77 e vezes menor respectivamente. O efeito benéfico da adição de nitrogênio na resistência à erosão por cavitação dos aços inoxidáveis austeníticos estudados foi atribuído a: (i) aumento na resistência à deformação plástica; (ii) distribuição mais homogênea da deformação plástica induzida pelas ondas de choque e micro-jatos característicos do processo de cavitação; e (iii) aumento da importância relativa dos mecanismos de perda de massa com elevado consumo de energia de impacto. Nos primeiros estágios do dano erosivo por cavitação se observou clara evidência de deformação plástica, acompanhada de formação de microreelevo superficial e de protrusão de bandas de escorregamento. A perda de massa em nível microscópico (observações no MEV) começa como destacamento de material em microtrincas e micropites. Observou-se que tanto a nucleação do dano como o seu crescimento se apresenta de forma heterogênea na escala do tamanho de grão. Os sítios microestruturais nos quais se iniciou o dano com perda de massa foram preferencialmente protuberâncias nas protrusões de bandas de escorregamento, protuberâncias nos contornos de grão e as interfaces matriznitreto. O incremento do teor de nitrogênio (em solução sólida) na amostra aumentou a importância relativa dos contornos de grão como locais de nucleação do dano, em relação ao dano iniciado no interior dos grãos. Observou-se que o interior dos grãos com planos 100 ou 111 orientados de forma aproximadamente paralela à superfície das amostras são regiões muito suscetíveis à incubação do dano e ao crescimento do mesmo. Já os grãos com planos 101 orientados aproximadamente paralela à superfície das amostras, apresentam regiões com resistência ao dano bem maior. Esses resultados são discutidos, considerando as diferenças de tensão (resultantes da ação de ondas de choque causadas pela implosão de bolhas de cavitação) crítica projetada para cisalhamento de grãos com diferentes orientações. O dano ocorre preferencialmente em contornos de grãos com acentuados gradientes de tensão resolvida para a deformação plástica, onde se desenvolve elevada concentração de tensões. Em particular, os contornos de macla CSL 3 são acentuadamente mais suscetíveis à incubação do dano que os outros tipos de contornos CSL e que os contornos não CSL. / High nitrogen austenitic stainless steels containing 0.9 wt-% N and 20 wt- % N were tested in a ultrasonically induced vibratory cavitation testing device. Incubation times for damage initiation and mass losses were periodically measured during the cavitation-erosion tests. Scanning Electron Microscopy observation of the damaged surfaces allowed identifying the wear mechanisms operating during each step of the cavitation-erosion test. 0.9 wt-% N specimens were obtained through High Temperature Gas Nitriding UNS S31803 duplex stainless steel, at temperatures between 1050 and 1200 oC. Three groups of specimens were obtained: solubilized with all nitrogen in solid solution, solubilized and work hardened specimens and nitride containing specimens. The 20 wt- % N specimens were obtained through Low Temperature Plasma Nitriding the already High Temperature Gas Nitrided specimens and getting an expanded austenite layer at the surface. The specimens were firstly characterized by Electron Backscattered Diffraction - EBSD techniques and then submitted to the cavitation-erosion tests in distilled water. When compared to conventional UNS S30403 lean nitrogen solubilized austenitic stainless steel specimens, greater incubation times and smaller maximum wear rates were observed. The maximum wear rates (compared to those of the solubilized UNS S30403 steel) were: for the nitride containing specimen 6.9 times smaller; for textured and non-textured all nitrogen in solid solution specimens 26.8 and 25 times smaller, respectively; for the solubilized and work hardened specimen 145 times smaller; for the expanded austenite layer, with circa 20 wt- % N, specimens 300 times smaller. The beneficial effect of nitrogen on the cavitation-erosion resistance of the studied specimens was attributed to: (i) an increase in resistance to plastic deformation; (ii) a more homogeneous distribution of the plastic deformation; and (iii) an increase of the relative participation of energy consuming mass loss mechanisms. Plastic deformation accompanied by formation of micro relief at the surface and slip bands protrusions were clearly identified, during the first stages of cavitation erosion. The first evidences of mass loss (detected by SEM observations) were seen as particles detaching from micro cracks and micro pits formed at the grain surface. Nucleation and growth of cavitation damage was heterogeneously distributed at the grain scale. Slip bands protrusions, grain boundary protrusions and nitride matrix interfaces sites were more prone to nucleating the damage. Increasing nitrogen contents in solid solution increased the relative contribution of grain boundary nucleated damage, compared to the total amount of nucleation sites. Grains with 100 and 111 crystallographic planes approximately parallel to the surface were more prone to nucleation and growth of cavitation damage. Grains with 101 planes // surface were much more resistant to cavitation-erosion damage. These results are discussed considering differences of critical resolved shear stresses for grains with different orientations. Cavitation erosion damage occurs preferentially at grain boundaries across which steep stress gradients arise. Particularly, CSL -3 twin boundaries are much more susceptible to cavitation erosion damage incubation than other types of CSL boundaries and non CSL boundaries.
|
2 |
Análise dos mecanismos de dano de aços inoxidáveis austeníticos com elevado teor de nitrogênio durante desgaste erosivo por cavitação / Analysis of damaging mechanisms of high nitrogen austenitic stainless steel during cavitation erosion tests.Dairo Hernan Mesa Grajales 20 July 2010 (has links)
Neste trabalho são estudados os mecanismos de desgaste, atuantes na escala do tamanho de grão (meso-escala), durante ensaios de cavitação vibratória, para diferentes amostras de aços inoxidáveis austeníticos ligados com nitrogênio. Amostras com teores superficiais de nitrogênio de aproximadamente 0, 9 % massa, 1, 4%massa e 20%massa, obtidas a partir do a¸co inoxidável dúplex UNS S31803, foram estudadas. As amostras do a¸co inoxidável duplex UNS S31803, com aproximadamente 0, 9 % N massa, foram obtidas por nitretação gasosa em alta temperatura (temperatura de nitretação entre 1050 e 1200 C) e consistiram em três grupos diferentes: amostras com nitrogênio em solução sólida e solubilizadas, amostras com precipitação de nitretos e amostras com nitrogênio em solução sólida e encruadas. Já as amostras com teor de nitrogênio próximo de 20 % N massa foram processadas por meio de nitretação a plasma na temperatura de 400 C, obtendo-se uma camada superficial de austenita expandida. As amostras de ensaio foram submetidas à caracterização de textura por difração de elétrons retroespalhados, EBSD, e posteriormente à cavitação vibratória em ´agua destilada. Os ensaios de cavitação foram periodicamente interrompidos com o intuito de estudar a deteriora¸cao das amostras por exame das mesmas no microscópio eletrônico de varredura, MEV, e por medidas de perda de massa. Quando comparadas com os aços inoxidáveis austeníticos convencionais (UNS S30403 solubilizado e UNS S31803 como recebido), sem adição de nitrogênio e livre de encruamento, as amostras estudadas apresentaram resistência ao desgaste por cavitação superior, quantificada tanto pelo tempo de incubação do dano com perda de massa quanto pela taxa máxima de perda de massa nos estágios avançados do dano. A taxa máxima de perda de massa para cada tipo de amostra estudada, com relação `a taxa máxima do material de comparação, o aço inoxidável convencional sem adição de nitrogênio e livre de encruamento (UNS S30403) solubilizado, foi de: amostras com precipitação de nitretos (318HTGN+Nit), 6,9 vezes menor; amostras com nitrogênio em solução sólida e solubilizadas (318HTGH+Sol) e laminadas e solubilizadas (318HTGN+Lam+Sol), 26,8 e 25 vezes menor, respectivamente; amostras com nitrogênio em solução sólida e encruadas (318HTGN+Enc) 145 vezes menor; e amostras com camada superficial de austenita expandida (obtidas por nitretação a plasma), (318HTGN+Plas e 304LSol+Plas) 290 e 1,77 e vezes menor respectivamente. O efeito benéfico da adição de nitrogênio na resistência à erosão por cavitação dos aços inoxidáveis austeníticos estudados foi atribuído a: (i) aumento na resistência à deformação plástica; (ii) distribuição mais homogênea da deformação plástica induzida pelas ondas de choque e micro-jatos característicos do processo de cavitação; e (iii) aumento da importância relativa dos mecanismos de perda de massa com elevado consumo de energia de impacto. Nos primeiros estágios do dano erosivo por cavitação se observou clara evidência de deformação plástica, acompanhada de formação de microreelevo superficial e de protrusão de bandas de escorregamento. A perda de massa em nível microscópico (observações no MEV) começa como destacamento de material em microtrincas e micropites. Observou-se que tanto a nucleação do dano como o seu crescimento se apresenta de forma heterogênea na escala do tamanho de grão. Os sítios microestruturais nos quais se iniciou o dano com perda de massa foram preferencialmente protuberâncias nas protrusões de bandas de escorregamento, protuberâncias nos contornos de grão e as interfaces matriznitreto. O incremento do teor de nitrogênio (em solução sólida) na amostra aumentou a importância relativa dos contornos de grão como locais de nucleação do dano, em relação ao dano iniciado no interior dos grãos. Observou-se que o interior dos grãos com planos 100 ou 111 orientados de forma aproximadamente paralela à superfície das amostras são regiões muito suscetíveis à incubação do dano e ao crescimento do mesmo. Já os grãos com planos 101 orientados aproximadamente paralela à superfície das amostras, apresentam regiões com resistência ao dano bem maior. Esses resultados são discutidos, considerando as diferenças de tensão (resultantes da ação de ondas de choque causadas pela implosão de bolhas de cavitação) crítica projetada para cisalhamento de grãos com diferentes orientações. O dano ocorre preferencialmente em contornos de grãos com acentuados gradientes de tensão resolvida para a deformação plástica, onde se desenvolve elevada concentração de tensões. Em particular, os contornos de macla CSL 3 são acentuadamente mais suscetíveis à incubação do dano que os outros tipos de contornos CSL e que os contornos não CSL. / High nitrogen austenitic stainless steels containing 0.9 wt-% N and 20 wt- % N were tested in a ultrasonically induced vibratory cavitation testing device. Incubation times for damage initiation and mass losses were periodically measured during the cavitation-erosion tests. Scanning Electron Microscopy observation of the damaged surfaces allowed identifying the wear mechanisms operating during each step of the cavitation-erosion test. 0.9 wt-% N specimens were obtained through High Temperature Gas Nitriding UNS S31803 duplex stainless steel, at temperatures between 1050 and 1200 oC. Three groups of specimens were obtained: solubilized with all nitrogen in solid solution, solubilized and work hardened specimens and nitride containing specimens. The 20 wt- % N specimens were obtained through Low Temperature Plasma Nitriding the already High Temperature Gas Nitrided specimens and getting an expanded austenite layer at the surface. The specimens were firstly characterized by Electron Backscattered Diffraction - EBSD techniques and then submitted to the cavitation-erosion tests in distilled water. When compared to conventional UNS S30403 lean nitrogen solubilized austenitic stainless steel specimens, greater incubation times and smaller maximum wear rates were observed. The maximum wear rates (compared to those of the solubilized UNS S30403 steel) were: for the nitride containing specimen 6.9 times smaller; for textured and non-textured all nitrogen in solid solution specimens 26.8 and 25 times smaller, respectively; for the solubilized and work hardened specimen 145 times smaller; for the expanded austenite layer, with circa 20 wt- % N, specimens 300 times smaller. The beneficial effect of nitrogen on the cavitation-erosion resistance of the studied specimens was attributed to: (i) an increase in resistance to plastic deformation; (ii) a more homogeneous distribution of the plastic deformation; and (iii) an increase of the relative participation of energy consuming mass loss mechanisms. Plastic deformation accompanied by formation of micro relief at the surface and slip bands protrusions were clearly identified, during the first stages of cavitation erosion. The first evidences of mass loss (detected by SEM observations) were seen as particles detaching from micro cracks and micro pits formed at the grain surface. Nucleation and growth of cavitation damage was heterogeneously distributed at the grain scale. Slip bands protrusions, grain boundary protrusions and nitride matrix interfaces sites were more prone to nucleating the damage. Increasing nitrogen contents in solid solution increased the relative contribution of grain boundary nucleated damage, compared to the total amount of nucleation sites. Grains with 100 and 111 crystallographic planes approximately parallel to the surface were more prone to nucleation and growth of cavitation damage. Grains with 101 planes // surface were much more resistant to cavitation-erosion damage. These results are discussed considering differences of critical resolved shear stresses for grains with different orientations. Cavitation erosion damage occurs preferentially at grain boundaries across which steep stress gradients arise. Particularly, CSL -3 twin boundaries are much more susceptible to cavitation erosion damage incubation than other types of CSL boundaries and non CSL boundaries.
|
Page generated in 0.1217 seconds