• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nature de la phase basse temperature des verres de spin Heisenberg en dimension 3

PETIT, Dorothée 14 January 2002 (has links) (PDF)
La question de l'existence d'une réelle transition de phase entre l'état paramagnétique et l'état verre de spin est une question qui a été débattue pendant de nombreuses années. Il semble dorénavant admis que le gel des spins à basse température ne se fasse pas de façon progressive, et l'existence d'une véritable transition à T9. finie est communément acceptée, mais de nombreuses questions subsistent: comment expliquer la réalité de cette transition observée expérimentalement dans les systèmes réels alors que théorie et simulations numériques prévoient une transition à température nulle pour des systèmes Heisenberg en dimension 3? Comment expliquer, si l'on admet l'existence de cette transition de phase, les valeurs si dispersées des exposants critiques qui lui sont associés, lorsqu'ils sont mesurés sur des systèmes différents, mais appartenant à la même classe d'universalité ? Une autre question non encore résolue est celle de l'existence ou non d'une phase verre de spin sous champ magnétique. Les théories de champ moyen prédisent que l'ordre verre de spin subsiste lorsque l'on applique un champ magnétique, alors que le modèle des gouttelettes prévoit que l'application d'un champ magnétique le détruit. Les expériences n'ont jusqu'ici toujours pas donné de réponse claire à cette question. Récemment Hikaru Kawamura a proposé une théorie qui semble expliquer certaines des caractéristiques peu usuelles de la transition verre de spin. Il considère que la mise en ordre verre de spin est chirale. Un ordre chiral n'a pas de signature expérimentale simple, mais en présence d'un couplage avec les spins de type Dzialoshinsky-Moriya (DM, il donnerait lieu au gel effectif des spins observé expérimentalement. Dans le cadre de son modèle, Kawamura prédit des exposants critiques qui prendraient des valeurs caractéristiques d'une transition chirale à la limite d'une interaction DM faible, et d'une transition de type Ising dans le cas d'interactions DM fortes. Ce modèle prévoit de plus l'existence d'une phase verre de spin sous champ magnétique. Le travail qui est présenté dans cette thèse est centré sur l'étude expérimentale de la phase basse température des verres de spin Heisenberg en dimension 3, et plus particulièrement sur le rôle joué par l'anisotropie aléatoire dans ce type de systèmes. Le principal outil expérimental de ce travail est la mesure du couple magnétique en fonction du champ et de la température. Cette technique qui s'est avérée très puissante, n'avait jusqu'alors été appliquée aux verres de spin que pour des champs assez faibles (1 T). La gamme de champ que nous avons pu ici étudier à l'aide de cette technique s'étend jusqu'à 4 T. Le premier chapitre de la thèse est une courte introduction aux systèmes verres de spin dans laquelle leurs principales caractéristiques expérimentales sont exposées. Dans le second chapitre sont présentés les fondements et implications des deux principaux modèles des verres de spin, à savoir le modèle de champ moyen et le modèle des gouttelettes. Le troisième chapitre est consacré à l'exposition du modèle de la transition chirale. Les différentes techniques expérimentales utilisées dans ce travail sont présentées dans le quatrième chapitre. Le principal outil expérimental utilisé dans ce travail est un dispositif de mesure de couple magnétique spécialement mis au point pour l'étude de ce type de systèmes. Des mesures d'aimantation classiques ont aussi été réalisées à l'aide d'un magnétomètre à SQUID. C'est dans le chapitre cinq que sont exposés les résultats des mesures de couple magnétique effectuées sur cinq échantillons verre de spin: le CuMn 3%, l'Ag 3%, le CdCri 1.7In0.3.S4, l'AuFe 8% et le (Fe 0.1,Ni 0.9)75Pl6B6AI3. Ces systèmes sont bien connus et déjà très bien caractérisés expérimentalement. Ce chapitre est lui-même divisé en cinq parties: après les deux premières dans lesquelles est exposé le principe des mesures de couple, une troisième partie montre comment cette technique nous a permis d'estimer la force de l'énergie d' anisotropie de ces différents systèmes. La quatrième partie de ce chapitre est centrée sur la détermination du diagramme de phase dans le plan (HT) de ces mêmes composés par des mesures de couple et des mesures d'irréversibilité longitudinale. La forme des diagrammes de phase évolue avec la force de l'anisotropie, comme prévu par les théories de champ moyen pour des systèmes Heisenberg avec anisotropie aléatoire, et les résultats obtenus pour les trois systèmes à plus faible anisotropie, à savoir le CuMn, l'AgMn et le CdCr l.7In 0.3S4, sont en très bon accord avec les prédictions du modèle de la transition chirale. La dernière partie de ce chapitre est consacrée à l'étude de la relaxation du couple dans la phase basse température. Cette relaxation est lente et non exponentielle. Elle a été systématiquement mesurée pour tous les échantillons jusqu'à 1000 secondes après avoir tourné le champ magnétique, et dans cette fenêtre de temps, elle est purement algébrique: G(t)a t-a. Le taux de relaxation a, seule quantité qui permette de caractériser la rigidité de l'état verre de spin en l'absence de temps caractéristique, est très peu dépendant du champ magnétique sur une gamme assez large de champ. La conclusion principale de ce chapitre est que l'état verre de spin n'est pas détruit par l'application d'un champ magnétique, contrairement à ce que prévoit le modèle des gouttelettes et en accord avec le modèle de champ moyen et le modèle de la transition chirale. Le sixième chapitre est consacré à la présentation des résultats obtenus sur les exposants critiques de ces cinq systèmes. Nous avons mesuré pour le CuMn 3%, l'AgMn 3%, l'AuFe 8% et le Fe0.1,Ni0.9)75Pl6B6AI3 les exposants critiques d, g et b en utilisant la même définition de Tg (exposée dans le cinq ème chapitre), le même critère pour définir la taille de la région critique, ainsi que le même protocole expérimental. Les résultats obtenus avec les mêmes critères par Vincent et. al [1] sur le CdCr l.7In0.3S4 sont repris. La variation des exposants critiques avec le système étudié n'est pas un artifice expérimental: les verres de spin violent bel et bien les règles d'universalité. La conclusion majeure de ce chapitre est que les valeurs des exposants critiques varient de façon continue entre des valeurs proches des valeurs mesurées pour la transition chirale pure pour les systèmes à plus faible anisotropie, et des valeurs de plus en plus proches des valeurs de type Ising 3D à mesure que la force de l'anisotropie aléatoire augmente. Ce dernier chapitre est suivi de trois annexes dans lesquelles le détail des mesures des exposants critiques de l'AgMn, du CuMn et du Fe0.1,Ni0.9)75Pl6B6AI3 est présenté.

Page generated in 0.0202 seconds