• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heterojunctions and Schottky Diodes on Semiconductor Nanowires for Solar Cell Applications

Liu, Piao 01 January 2010 (has links)
Photovoltaic devices are receiving growing interest in both industry and research institutions due to the great demand for clean and renewable energy. Among all types of solar cells, cadmium sulfide (CdS) – cadmium telluride (CdTe) and cadmium sulfide (CdS) - copper indium diselenide (CuInSe2 or CIS) heterojunctions based thin film solar cells are of great interest due to their high efficiency and low cost. Further improvement in power conversion efficiency over the traditional device structure can be achieved by tuning the optical and electric properties of the light absorption layer as well as the window layer, utilizing nano template-assisted patterning and fabrication. In this dissertation, simulation and calculation of photocurrent generation in nanowires (NW) based heterojunction structure indicated that an estimated 25% improvement in power conversion efficiency can be expected in nano CdS – CdTe solar cells. Two novel device configurations for CdTe solar cells were developed where the traditional thin film CdS window layer was replaced by nanowires of CdS, embedded in aluminum oxide matrix or free standing. Nanostructured devices of the two designs were fabricated and a power conversion efficiency value of 6.5% was achieved. Porous anodic aluminum oxide (AAO) was used as the template for device fabrication. A technology for removing the residual aluminum oxide barrier layer between indium tin oxide (ITO) substrate and AAO pores was developed. Causes and remedies for the non-uniform barrier layer were investigated, and barrier-free AAO on ITO substrate were obtained. Also, vertically aligned nanowire arrays of CIS of controllable diameter and length were produced by simultaneously electrodepositing Cu, In and Se from an acid bath into the AAO pores formed on top of an aluminum sheet. Ohmic contact to CIS was formed by depositing a 100 nm thick gold layer on top and thus a Schottky diode device of the Au/CIS nanowires/Al configuration was obtained. Material properties of all these nanowires were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), absorption measurement. Current-voltage (I-V), capacitance-voltage (C-V) and low-temperature measurements were performed for all types of devices and the results were analyzed to advance the understanding of electron transport in these nano-structured devices.
2

Development Of Transparent And Conducting Back Contacts On Cds/cdte Solar Cells For Photoelectrochemical Application

Avachat, Upendra Sureshchandra 01 January 2005 (has links)
The development of devices with high efficiencies can only be attained by tandem structures which are important to the advancement of thin-film photoelectrochemical (PEC) and photovoltaic (PV) technologies. FSEC PV Materials Lab has developed a PEC cell using multiple bandgap tandem of thin film PV cells and a photocatalyst for hydrogen production by water splitting. CdS/CdTe solar cell, a promising candidate for low-cost, thin-film PV cell is used as one of the thin film solar cells in a PEC cell. This research work focuses on developing various back contacts with good transparency in the infrared region (~750 - 1150 nm) for a CdS/CdTe solar cell. CdS/CdTe solar cells were prepared with three different configurations, Glass/SnO2:F/CdS/CdTe/ZnTe:Cu/ITO/Ni-Al (series 1), Glass/SnO2:F/CdS/CdTe/Cu2Te/ITO/Ni-Al (series 2), Glass/SnO2:F/CdS/CdTe/Br-Me etching/Cu/ITO/Ni-Al (series 3). The back contact preparation process for a CdS/CdTe solar cell involves the deposition of a primary p-type back contact interface layer followed by the deposition of transparent and conducting ITO and a Ni-Al outer metallization layer. Back contact interface layers were initially optimized on glass substrates. A ZnTe:Cu layer for a series 1 cell was deposited using hot wall vacuum evaporation (HWVE). Cu2Te and Cu thin films for series 2 and series 3 cells were deposited by vacuum evaporation. HWVE technique produced highly stoichiometric ZnTe:Cu thin films with cubic phase having {111} texture orientation. All the back contact interface layers demonstrated better transparency in the infrared region on glass substrate. Formation of crystalline phase and texture orientation were studied using X-ray diffraction (XRD). The composition was analyzed by electron probe microanalysis (EPMA). Transparency measurements were carried out by optical transmission spectroscopy. Thickness measurements were carried out using a DEKTAK surface profile measuring system. Finally, completed solar cells for all the series were characterized for current-voltage (I-V) measurements using the I-V measurement setup developed at the FSEC PV Materials Lab. The PV parameters for the best series 1 cell measured at an irradiance of 1000 W/m2 were: open circuit voltage, Voc = 630 mV, short circuit current, Isc = 7.68 mA/ cm2, fill factor, FF = 37.91 %, efficiency, ç = 3.06 %. The PV parameters for the best series 2 cell measured were: Voc = 690 mV, Isc = 8.7 mA/ cm2, FF = 45.19 %, ç = 4.8 %. The PV parameters for the best series 3 cell measured were: Voc = 550 mV, Isc = 9.70 mA/ cm2, FF = 42.25 %, ç = 5.63 %. The loss in efficiency was attributed to the possible formation of a non-ohmic contact at the interface of CdTe and back contact interface layer. Decrease in the fill factor was attributed to high series resistance in the device.

Page generated in 0.0235 seconds