Spelling suggestions: "subject:"well automated markov 2analysis"" "subject:"well automated markov 3analysis""
1 |
Spatio-temporal dynamics in land use and habit fragmentation in Sandveld, South AfricaJames Takawira Magidi January 2010 (has links)
<p>This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change Modeller and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant waterdependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.</p>
|
2 |
Spatio-temporal dynamics in land use and habit fragmentation in Sandveld, South AfricaJames Takawira Magidi January 2010 (has links)
<p>This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change Modeller and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant waterdependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.</p>
|
3 |
Spatio-temporal dynamics in land use and habit fragmentation in Sandveld, South AfricaMagidi, James Takawira January 2010 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) - MSc (Biodiv and Cons Biol) / This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change Modeller and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant waterdependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices. / South Africa
|
4 |
Spatia-temporal dynamics in land use and habitat fragmentation in the Sandveld, South AfricaMagidi, James Takawira January 2010 (has links)
>Magister Scientiae - MSc / The Cape Floristic Region (CFR) in South Africa, is one of the world's five Mediterranean hotspots, and is also one of the 34 global biodiversity hotspots. It has rich biological diversity, high level of species endemism in flora and fauna and an unusual high level of human induced threats. The Sandveld forms part of the CFR and is also highly threatened by intensive agriculture (potato, rooibos and wheat farming), proliferation of tourism facilities, coastal development, and alien invasions. These biodiversity threats have led to habitat loss and are
threatening the long-term security of surface and ground water resources. In order to understand trends in such biodiversity loss and improve in the management of these ecosystems, earth-orbiting observation satellite data were used. This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural
vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change ModelIer and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant water dependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.
|
Page generated in 0.0695 seconds