• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a cell cross flow system

Chung, Jessica 30 November 2010 (has links)
Single cell analysis devices have become important tools to obtain unique information on cells to improve current medical techniques, such as tissue engineering, or diagnosis of cancer at an early stage. This thesis documents the development of a "cell cross flow system" (CFS), which aims to capture magnetically tagged (MT) cells from a heterogeneous population of cells, and array these cells in pre-determined locations using magnetic force. The CFS integrates a “magnetic single cell micro array” (MSCMA), and a gasket assembly to achieve this. Current single cell technology, relevant fluid and magnetic theory, CFS design process, finite element method (FEM) simulation, and cross flow experiments are detailed in this thesis. The CFS was successful in capturing MT Jurkat cells, and the experimental results were consistent with the FEM simulation analysis. It was found that the CFS was capable of capturing MT Jurkat cells up to a ratio of 1 to 103 (MT to non-magnetically tagged cells) using a cell concentration of 105 cells/mL. Although these results are promising, non-magnetically tagged Jurkat cells were found to adhere to the chip and could not be easily removed. Several recommendations were suggested for future iterations, including changing the gasket assembly design, optimizing the flow rate and cell concentration, and using smaller trap sizes for the MSCMA design.

Page generated in 0.0746 seconds