• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling glioblastoma heterogeneity to decipher its biology

Xie, Yuan January 2016 (has links)
Glioblastoma multiforme (GBM) is the most common and lethal form of primary brain tumor that mainly affects adults. GBM displays remarkable intra- and inter-tumoral heterogeneity and contains a subpopulation of cells named glioma stem cells that is believed to be responsible for tumor maintenance, progression and recurrence. We have established and characterized a biobank of 48 cell lines derived from GBM patients. The cells were explanted and maintained as adherent cultures in serum-free, defined neural stem cell medium. These GBM cells (GCs) displayed NSC marker expression in vitro, had orthotopic tumor initiating capability in vivo, harboured genomic alterations characteristic of GBM and represented all four TCGA molecular subtypes. Our newly established biobank is also connected with a database (www.hgcc.se) that provides all molecular and clinical data. This resource provides a valuable platform of valid in vitro and in vivo models for basic GBM research and drug discovery. By using RCAS/tv-a mouse models for glioma, we found that GBMs originating from a putative NSC origin caused more tumorigenic GCs that had higher self-renewal abilities than those originating from putative glial precursor cell origin. By transcriptome analysis a mouse cell origin (MCO) gene signature was generated to cluster human GCs and GBM tissue samples and a functional relationship between the differentiation state of the initially transformed cell and the phenotype of GCs was discovered, which provides the basis for a new predictive MCO-based patient classification. LGR5 was found to be highly expressed in the most malignant mouse GC lines of putative NSC origin and also enriched in proneural GBMs characterized by PDGFRA alterations and OLIG2 up-regulation. By overexpressing or depleting LGR5 we discovered that high LGR5 expression in proneural GC lines increased the tumorigenicity, self-renewal and invasive capacities of the cells and could potentiate WNT signalling through its ligand RSPO1. Through transcriptome analysis we identified the candidate genes CCND2, PDGFRA, OLIG2, DKK1 that were found to be regulated by LGR5. In the last study, we found that mouse OPCs could initiate both astrocytic and oligdendroglial gliomas, which indicated that oncogenic signalling is dominant to cell of origin in affecting the histology of gliomas.
2

Coordinating Cell Cycle Exit and Differentiation in the Mammalian Retina and its Dependence on Rb

Pacal, Marek 06 December 2012 (has links)
Cell cycle exit (“birth”) of retinal progenitor cells (RPCs) is considered a watershed that is preceded by changing levels of cell cycle regulators, and followed rapidly by induction of a post M-phase differentiation cascade. Yet the actual dynamics of these events are largely unclear, thus whether mitosis separates pre- and post- birth differentiation cascades is unproven. We characterized the regulation of many division and differentiation markers relative to each other and final mitosis. Unexpectedly, classic “cell cycle” markers were present well beyond exit (e.g. Ki67, Pcna), early embryonic RPCs expressed “differentiation” markers that later labeled post-mitotic neurons exclusively (e.g. Brn3b, Tubb3, Ptf1a), and factors detected just after cell birth in the embryo were induced well beyond M-phase post-natally (e.g. Nrl, Crx). Thus, the dynamics of birth-associated events shift dramatically during development, even to either side of mitosis. Instead of mitosis behaving as a cog that activates post-exit differentation events we suggest that a common trigger induces both the exit and differentiation programs in RPCs, precisely coordinating their startpoints, but that each subsequent cascade unfolds independently. This model explains the convergence of birth and differentiation but also their temporal maliability. This view fits with our observation that in the absence of the Rb tumor suppressor, differentiation still initiates even without cell cycle exit. Finally, neoplastic transformation in the mouse retina requires loss of Rb and its relative p107, and emerging tumor features suggest an amacrine cell-of-origin. We studied Rb/p107 null clones, and noted two striking features. First, despite initial expansion of aberrantly dividing differentiating cells, apoptosis pruned clones precisely to wild type sizes. “Cell competition” maintains tissue size by selecting fitter over weaker progenitors; our data provide a unique example of competition among differentiating cells. Second, despite normal numbers of amacrine cells per Rb/p107 null clone, more clones contained amacrine cells and fewer had bipolar cells. Both this effect and ectopic division were E2f1-dependent. Thus, the oncogenic initiation event in mouse retinoblastoma triggers a very early fate switch, even before neoplastic transformation, broadening the possibilities for the cell-of-origin of retinoblastoma, and arguing that even very early stage tumors cannot be used to define cancer origin.
3

Coordinating Cell Cycle Exit and Differentiation in the Mammalian Retina and its Dependence on Rb

Pacal, Marek 06 December 2012 (has links)
Cell cycle exit (“birth”) of retinal progenitor cells (RPCs) is considered a watershed that is preceded by changing levels of cell cycle regulators, and followed rapidly by induction of a post M-phase differentiation cascade. Yet the actual dynamics of these events are largely unclear, thus whether mitosis separates pre- and post- birth differentiation cascades is unproven. We characterized the regulation of many division and differentiation markers relative to each other and final mitosis. Unexpectedly, classic “cell cycle” markers were present well beyond exit (e.g. Ki67, Pcna), early embryonic RPCs expressed “differentiation” markers that later labeled post-mitotic neurons exclusively (e.g. Brn3b, Tubb3, Ptf1a), and factors detected just after cell birth in the embryo were induced well beyond M-phase post-natally (e.g. Nrl, Crx). Thus, the dynamics of birth-associated events shift dramatically during development, even to either side of mitosis. Instead of mitosis behaving as a cog that activates post-exit differentation events we suggest that a common trigger induces both the exit and differentiation programs in RPCs, precisely coordinating their startpoints, but that each subsequent cascade unfolds independently. This model explains the convergence of birth and differentiation but also their temporal maliability. This view fits with our observation that in the absence of the Rb tumor suppressor, differentiation still initiates even without cell cycle exit. Finally, neoplastic transformation in the mouse retina requires loss of Rb and its relative p107, and emerging tumor features suggest an amacrine cell-of-origin. We studied Rb/p107 null clones, and noted two striking features. First, despite initial expansion of aberrantly dividing differentiating cells, apoptosis pruned clones precisely to wild type sizes. “Cell competition” maintains tissue size by selecting fitter over weaker progenitors; our data provide a unique example of competition among differentiating cells. Second, despite normal numbers of amacrine cells per Rb/p107 null clone, more clones contained amacrine cells and fewer had bipolar cells. Both this effect and ectopic division were E2f1-dependent. Thus, the oncogenic initiation event in mouse retinoblastoma triggers a very early fate switch, even before neoplastic transformation, broadening the possibilities for the cell-of-origin of retinoblastoma, and arguing that even very early stage tumors cannot be used to define cancer origin.
4

Interplay Between Cell of Origin and Oncogenic Activation in Glioma

Jiang, Yiwen January 2012 (has links)
Glioma is the most frequent primary tumor of the central nervous system. By using the RCAS/tv-a mouse glioma model, we have studied mechanisms controlling glioma development and the effect of cell of origin on these processes. SOX5 was identified as a brain tumor locus in a retroviral insertional mutagenesis screen of PDGF-B induced mouse gliomas. Here we found that SOX5 could suppress PDGFB-induced glioma development particularly in Ink4a-/- mice. Analysis of putative PDGF-B signaling pathways revealed that the underlying mechanism could involve the activation of AKT and p27, which caused an acute cellular senescence. When cultured in a highly selective serum free medium, glioma-initiating cells could be isolated from mouse GBMs and their self-renewal and proliferation was independent on exogenous EGF and FGF2. Addition of serum into the medium induced aberrant differentiation that was reversible. Specific depletion of viral PDGF-B demonstrated that PDGF-B was necessary for stemness and tumorigenicity of GICs by preventing them to differentiate. Subsequently, by applying the same culture conditions, GICs of APC, NSC and OPC origins were isolated from mouse GBMs. GICs derived from NSCs exhibited higher self-renewal, faster proliferation and more potent tumorigenicity than those of APC or OPC origin. Furthermore, addition of 5% serum significantly inhibited the proliferation of APC- and OPC-derived GICs, but did not in NSC-derived GICs. Transcriptome analysis revealed that GICs of the same cell of origin displayed distinct expression profiles. In the last study, we showed that OPCs could serve as the origin for astrocytic glioma. Results from immunostainings revealed that these tumors might belong to a different molecular subtype than the oligodendroglial tumors induced in OPCs. We also found differences in tumorigenic potential between OPCs in neonatal and adult mice, which suggest that developmental age of the cell of origin is important for its susceptibility to oncogenic transformation.
5

Truncated BRPF1 cooperates with Smoothened to promote adult Shh medulloblastoma

Aiello, Giuseppe 22 May 2020 (has links)
Tumors are composed of proliferating cells that invade healthy tissue and grow over time. Even though it is still unclear, it is a common opinion that the cells of origin should possess a proliferative capacity (Blanpain, 2013; Visvader, 2011). Particularly for brain cancers, the transition of neural progenitors to differentiated postmitotic neurons is considered irreversible in physiological and pathological conditions. Therefore, postmitotic neurons have not been considered as suitable cell of origin for brain cancer. Here, we show that neurons reprograming may occur upon Shh activation leading to medulloblastoma (MB) formation in vivo. Human SHH medulloblastoma (MB) is a brain tumor affecting adults and infants that is thought to originate from cerebellar granule neuron progenitors. Notably, several groups have shown that Shh pathway activation (SmoM2 overexpression) in mouse granule neuron progenitors is able to induce Shh MB (Schuller et al., 2008; Z.-J. Yang et al., 2008). These progenitors are present in infants and newborn mice, but they seem to be absent in adult humans and mice (Biran, Verney, & Ferriero, 2012; Marzban et al., 2014; Z.-J. Yang et al., 2008). Furthermore, it was recently discovered that the two different forms of SHH MB are distinguished by different transcriptome/methylome levels suggesting that the adult SHH MB may originate from a different cell of origin (Cavalli et al., 2017; Kool et al., 2014). Relying on these data, we take advantage of a conditional Cre-Lox recombination system to recapitulate the human adult medulloblastoma pathogenesis in mice, demonstrating that cerebellar post-migratory mature granule neurons upon SmoM2 overexpression can dedifferentiate and give rise to SHH MB in vivo. Moreover, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Notably, gene expression profiling on our samples allowed to associate “cerebellar granule progenitors-derived MB” with the human infant form while “truncated BRPF1-induced tumors” clustered with human adult SHH MB. Furthermore, as previously described by Kool et al., 2014, human adult SHH MB is characterised by the copresence of p-AKT and p-S6, compared to the human infant SHH MB that are positive for either p- AKT or p-S6 and always in a mutually exclusive way. Truncated BRPF1-induced tumors are double positive for p-AKT and p-S6, similarly to adult patients, while cerebellar granule progenitors derived MB present only p-S6. Furthermore, to define the contribution of chromatin changes in granule neurons dedifferentiation in response to Shh activation, we profiled changes in chromatin accessibility by ATAC-seq analysis on mice cerebella. SmoM2 overexpression changed the epigenetic landscape of granule neurons, enriching the number of open chromatin regions 12 associated with stem/progenitor-like genes. Moreover, the cooperation between truncated BRPF1 and SmoM2 in reshaping the chromatin arrangement of granule neurons was explored applying ATAC-seq on differentiated human cerebellar neurons derived from neuroepithelial cells. ATAC-seq analysis pointed out a synergistic mechanism between SmoM2 and truncated BRPF1 in modifying the epigenetic landscape of postmitotic neurons, increasing the chromatin accessibility of super-enhancers, associated with stemness and chromatin organization/modification genes. Our novel model of cancer development could explain the human SHH medulloblastoma onset in adult individuals where granule neuron progenitors are no more present. For these reasons, we strongly believe that our model configures as an important starting point for a new field in cancer and stem cell biology focusing on the study of mechanisms driving tumorigenesis in postmitotic cells.
6

Regional Differences in Glioma: The Role of Pax3 in the Mechanisms and Cellular Origins of Brainstem Glioma

Misuraca, Katherine LaFiura January 2014 (has links)
<p>Brain tumors are an incredibly diverse group of neoplasms, as evidenced by their varied locations in the brain, histological characteristics, and genetic alterations. Brain tumor heterogeneity can be potentially explained by distinct oncogenic events or cells-of-origin, or by region-specific intrinsic or extrinsic factors. Brainstem Glioma (BSG) is a particularly deadly brain tumor, afflicting 200-300 children in the United States each year. High-grade BSG (also known as Diffuse Intrinsic Pontine Glioma, DIPG) cannot be surgically removed, and the standard treatment of radiation therapy provides only temporary relief from symptoms. The past 5 years has witnessed a dramatic increase in knowledge regarding the biological basis of this disease along with the realization that BSG is distinct from other more common types of glioma, such as cerebral cortex glioma (CG). It was the goal of this study to investigate the regional differences in gliomas arising in the brainstem versus the cerebral cortex, using mice as a model system, and to begin to understand the contributions of the various possible sources of heterogeneity.</p><p> </p><p>In doing so, we have uncovered region-specific gene expression patterns in these two types of pediatric gliomas that are apparent even when the initiating genetic alterations and cell-of-origin are kept constant. Focusing on the <italic>paired box 3</italic> (Pax3) gene, which is expressed at higher levels in BSG than CG, we have found that Pax3 expression not only characterizes mouse BSGs driven by PDGF signaling, Ink4aARF-loss, p53-loss, and H3.3-K27M expression, but also identifies a novel subset of human BSGs that are associated with <italic>PDGFRA</italic> alterations and wild type <italic>ACVR1</italic> and that commonly harbor <italic>TP53</italic> alterations and the H3.3-K27M mutation. </p><p>As Pax3 plays a pro-tumorigenic role in other types of cancer, we hypothesized that Pax3 expression contributes to the brainstem gliomagenesis process as well. By utilizing mouse models, we found that Pax3 inhibits apoptosis and promotes proliferation of Nestin-expressing brainstem progenitor cells <italic>in vitro</italic> and enhances PDGF-B-driven BSG <italic>in vivo</italic>. Furthermore, we speculate that Pax3 expression may be a marker for Wnt pathway activation in BSG, which is targetable via pharmacologic agents. Indeed, a subset of Wnt inhibitors tested effectively slowed the growth of BSG cells <italic>in vitro</italic>, however cross talk with the Shh pathway might indicate that dual Wnt and Shh inhibition is necessary.</p><p>In addition, the regional expression pattern of Pax3 in gliomas correlates with its expression in normal murine brain development, leading us to hypothesize that Pax3 progenitor cells in the neonatal brainstem can serve as a cell-of-origin for BSG. We discovered that targeting Pax3 progenitors with PDGF-B overexpression and Ink4aARF- or p53-loss induces high-grade BSG that physiologically resemble the human disease. This novel and distinct model of BSG may be utilized in the future for preclinical studies.</p><p>The identification of Pax3 as a regional marker of mouse and human BSG has led to the discovery of a novel subset of the human disease, the identification of a novel oncogene contributing to pathogenesis, and the characterization of a novel cell-of-origin with the potential to give rise to the disease. This information contributes significantly to the current understanding of the mechanisms and cellular origins of BSG, and will hopefully instruct future investigations into how to better treat this disease.</p> / Dissertation
7

Using Novel Genetically Engineered Mouse Models of Soft Tissue Sarcoma to Interrogate the Contribution of Cell of Origin and Tissue Injury to Sarcoma Development

Stephens, Leonor Ano January 2015 (has links)
<p>Soft tissue sarcomas (STSs) are a heterogeneous group of mesenchymal tumors comprised of >70 subtypes. An important question is how the cell of origin and the pathways to tumor development shape the broad array of STS subtypes. By forcing identical tumor-promoting mutations to different cell types in Genetically Engineered Mouse Models (GEMMs) of STS, I have a unique model system to investigate this question. In the process of performing these experiments I observed that genetic mutations are necessary, but not sufficient for rapid sarcoma formation. However, tissue injury dramatically accelerates sarcoma formation in our GEMM of STS. For my thesis, I have worked to understand how cell of origin affects sarcoma subtype and how the microenvironment in our models promotes transformation. I have observed that cell of origin plays an important, but not the only, role in defining STS subtype. Additionally, I have concluded that the microenvironment, and specifically the HGF/c-MET signaling pathway play a crucial role in promoting sarcoma development after acute tissue injury.</p> / Dissertation
8

Posttransplant Lymphoproliferative Disorders : Studies of Epstein-Barr Virus, Regulatory T Cells and Tumor Origin

Kinch, Amelie January 2014 (has links)
Epstein-Barr virus (EBV) infects almost all humans and establishes lifelong latency in B cells. Posttransplant lymphoproliferative disorder (PTLD) is a rare but serious complication after transplantation triggered by immunosuppression and often related to EBV infection. The aim of this thesis was to study the role of EBV in relation to clinical and histological features of PTLD, regulatory T cells (Tregs), and donor or recipient origin of PTLD. EBV surveillance after allogeneic hematopoietic stem cell transplantation (allo-HSCT) showed that EBV reactivations were common, but that symptomatic EBV disease (including PTLD) only occurred in the high-risk group (unrelated or mismatched related grafts, reduced-intensity conditioning). A threshold of 1000 copies/ml plasma distinguished EBV disease from asymptomatic reactivations. In a population-based cohort of 135 PTLDs/lymphomas after solid organ transplantation (SOT) almost half were EBV–. EBV+ PTLDs were associated with B cell phenotype, non-germinal center subtype of diffuse large B cell lymphoma (DLBCL), early-onset, graft involvement, antithymocyte globulin treatment, and younger age. EBV– PTLDs were associated with T cell phenotype, bone marrow involvement, and hepatitis C. Most PTLDs displayed few or no intratumoral Tregs with the marker FoxP3, possibly due to heavy immuno­suppres­sion. Half of both FoxP3+ and FoxP3– PTLDs were EBV+. FoxP3+ PTLDs were associated with B cell phenotype and hepatitis C. All PTLDs for which tumor origin could be determined were recipient-derived and half of them were EBV+. Eight of twelve recipient-derived graft PTLDs were disseminated outside the graft. T cell PTLD and hepatitis C were independently associated with inferior overall survival, whereas subtype of DLBCL, FoxP3-expression, and EBV-status did not influence survival. In conclusion, monitoring of EBV DNAemia in high-risk patients after allo-HSCT and pre-emptive therapy is valuable for prevention of PTLD. Use of anti­thymocyte globulin increases the risk for EBV+ PTLDs after allo-HSCT and SOT. With long follow-up time, a large proportion of PLTDs after SOT are EBV– with a different clinical presentation. Tregs are rare in PTLD and do not affect survival. The vast majority of PTLDs after SOT is of recipient origin. Graft PTLDs are more likely recipient-derived if disseminated. EBV-status is not associated with intratumoral Tregs or PTLD of recipient origin.
9

Identification of molecular mechanisms regulating cancer stem cell functions and tumor heterogeneity in skin squamous cell carcinoma

Boumahdi, Soufiane 28 April 2017 (has links)
Le carcinome spinocellulaire (SCC) est le 2ème cancer de la peau le plus fréquent avec plus d’un million de nouveaux patients diagnostiqués dans le monde chaque année. On retrouve également des SCCs associés à un pronostic plus sombre au niveau de la tête, du cou, de la cavité orale et de l’œsophage. Des travaux récents ont démontré l’existence de cellules souches cancéreuses (CSCs) dans les SCCs cutanés mais les mécanismes moléculaires contrôlant leurs fonctions restent indéterminés. Dans une première étude, nous avons montré que Sox2, un facteur de transcription (TF) associé aux cellules souches, est détecté de manière hétérogène dans une grande majorité des papillomes et des SCCs chez la souris et chez l’humain. La délétion conditionnelle de Sox2 dans l’épiderme réduit drastiquement l’apparition de tumeurs démontrant le rôle clé de Sox2 dans l’initiation tumorale. En utilisant une souris génétiquement modifiée Sox2-GFP knock-in, nous avons démontré que les cellules tumorales Sox2+ sont enrichies en cellules propagatrices de tumeurs dont la proportion augmente au fur et à mesure des transplantations sériées. L’ablation des cellules Sox2+ dans les papillomes et les SCCs conduit à une importante régression des tumeurs, indiquant que ces cellules ont un rôle crucial dans le maintien des tumeurs. La délétion conditionnelle de Sox2 dans des papillomes et SCCs préexistants provoque également une régression majeure des tumeurs, soulignant le rôle essentiel de Sox2 dans la régulation des fonctions des cellules tumorales. Une analyse transcriptionnelle et des expériences d’immunoprécipitation de chromatine nous ont permis de mettre en évidence un réseau de gènes associés à des fonctions essentielles des cellules tumorales et régulés par Sox2 dans les tumeurs primaires in vivo. Dans une 2ème étude, nous avons montré que les SCCs issus de l’épiderme inter-folliculaire (IFE) présentent en général un caractère différencié alors que ceux issus du follicule pileux (HF) présentent fréquemment des caractéristiques de transition épithélio-mésenchymateuse (EMT). En réalisant une analyse transcriptionnelle et épigénétique, nous avons démontré que les différentes cellules à l’origine expriment un réseau de gènes spécifiques et présentent une accessibilité différentielle à des sites de liaison d’importants TFs associés soit à un phénotype épithélial soit à l’EMT. Ces résultats démontrent que l’état transcriptionnel et épigénétique de la cellule à l’origine amorce spécifiquement les tumeurs vers le processus d’EMT. L’ensemble de ces résultats souligne des mécanismes cruciaux à l’établissement de l’hétérogénéité tumorale et seront essentiels pour parvenir à des pronostics affinés et au développement de nouvelles thérapies ciblées dans le traitement du cancer. / Skin squamous cell carcinoma (SCC) is the second most frequent skin cancer with more than a million new patients affected every year throughout the world. It is also the predominant cancer of the head, neck, oral cavity and esophagus, associated with a poor prognosis. Recent studies have identified cancer stem cells (CSCs) in skin SCC but the molecular mechanisms controlling their functions remain unclear. In a first study, we show that Sox2, a transcription factor (TF) associated with stemness, is expressed in a heterogeneous manner in the vast majority of benign and malignant skin tumors in mouse and human. Sox2 conditional deletion in the epidermis impairs tumor development showing that Sox2 plays a crucial role in tumor initiation. Using a Sox2-GFP knock-in mouse model, we show that Sox2-expressing tumor cells are greatly enriched in tumor-propagating cells, which further increase upon serial transplantations. Lineage ablation of Sox2-expressing cells in primary benign and malignant SCCs leads to tumor regression, consistent with the critical role of Sox2-expressing cells in tumor maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to tumor regression, supporting the essential role of Sox2 in regulating cancer cells functions. Using transcriptional profiling and chromatin immunoprecipitation, we uncovered a gene network controlling many cancer hallmarks regulated by Sox2 in primary tumour cells in vivo.In a second study, by targeting the same oncogenic mutations to distinct skin compartments, we show that interfollicular epidermis (IFE)-derived SCCs are generally well-differentiated, while hair follicle stem cells (HFSCs)-derived SCCs frequently exhibit features of epithelial-mesenchymal transition (EMT). Using transcriptional and epigenetic profiling, we show that IFE and HF tumor-initiating cells harbor distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT. These different chromatin landscapes correlate with the differential accessibility of key epithelial and EMT TFs binding sites in the cancer cell of origin. These findings demonstrate that cell type-specific chromatin and transcriptional states differentially prime tumours towards EMT.Altogether, these results highlight crucial mechanisms for the establishment of tumor heterogeneity which will be relevant for better prognostic assessment and the development of novel targeted therapies for cancer treatment. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
10

Introduction to Salivary Gland Lesions Cytology

Al-Abbadi, Mousa A. 09 March 2011 (has links)
No description available.

Page generated in 0.0588 seconds