• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 14
  • Tagged with
  • 279
  • 278
  • 277
  • 98
  • 98
  • 96
  • 96
  • 91
  • 91
  • 79
  • 74
  • 74
  • 73
  • 73
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paracrine and autocrine functions of PDGF in malignant disease

Sjöblom, Tobias January 2002 (has links)
<p>Growth factors and their receptors are frequently activated by mutations in human cancer. Platelet-derived growth factor (PDGF)-B and its tyrosine kinase receptor, the PDGF β-receptor, have been implicated in autocrine transformation as well as paracrine stimulation of tumor growth. The availability of clinically useful antagonists motivates evaluation of PDGF inhibition in these diseases.</p><p>In chronic myelomonocytic leukemia with t(5;12), parts of the transcription factor TEL and the PDGF β-receptor are fused, generating a constitutively signaling protein. Oligomerization and unique phosphorylation pattern of TEL-PDGFβR was demonstrated, as well as the transforming activity of TEL-PDGFβR, which was sensitive to PDGF β-receptor kinase inhibition.</p><p>Dermatofibrosarcoma protuberans (DFSP) is characterized by a translocation involving the collagen Iα1 and PDGF B-chain genes. The COLIA1-PDGFB fusion protein was processed to mature PDGF-BB and transformed fibroblasts in culture. The PDGF antagonist STI571 inhibited growth of <i>COLIA1-PDGFB</i> transfected cells and primary DFSP cells <i>in vitro</i> and <i>in vivo</i> through induction of apoptosis.</p><p>Paracrine effects of PDGF-DD, a ligand for the PDGF β-receptor, were evaluated in a murine model of malignant melanoma. PDGF-DD production accelerated tumor growth and altered the vascular morphology in experimental melanomas.</p><p>A validated immunohistochemical procedure for PDGF β-receptor detection was established and applied to normal tissues and more than 280 tumor biopsies. Perivascular and stromal expression was detected in 90% and 50%, respectively, of human tumors.</p><p>Recently, non-transformed cells in the tumor microenvironment have emerged as targets in cancer therapy. Selective sensitization of tumor fibroblasts to paclitaxel by STI571 was evaluated <i>in vitro</i> and in a xenograft model. Whereas neither drug alone caused growth inhibition, combination of the two significantly reduced tumor growth, suggesting anti-stromal therapy as a possible treatment modality in solid tumors.</p>
2

TGFβ Signal Transduction in Endothelial Cells

Valdimarsdóttir, Gudrun January 2004 (has links)
<p>Transforming growth factor β (TGFβ) is a multifunctional cytokine that is involved in many biological effects, such as proliferation, migration, differentiation and cell survival. TGFβ regulates cellular responses by binding to a heteromeric complex of type I and type II serine/threonine kinase receptors. The type I receptor, termed activin receptor-like kinase (ALK), acts downstream of the type II receptor and propagates the signal to the nucleus by phosphorylating receptor regulated Smads (R-Smads). The activated R-Smads can associate with the common partner Smad, Smad4, and this complex translocates to the nucleus where it participates in transcriptional regulation of target genes. TGFβ plays an important role in vascular morphogenesis. The aim of this study was to obtain more insight into the mechanisms by which TGFβ can act as an inhibitor or stimulator of angiogenesis Our findings show that in endothelial cells (ECs), TGFβ can activate two distinct type I receptor/Smad signalling pathways with opposite cellular responses. In most cell types, TGFβ signals via the TGFβ type I receptor, ALK5. However, ECs express a predominant endothelial type I receptor, named ALK1. Whereas the TGFβ/ALK1 signalling leads to activation, the TGFβ/ALK5 pathway results in an inhibition of the activation state. This suggests that TGFβ regulates the activation state of the endothelium via a fine balance between these two pathways. We identified genes that are specifically induced by TGFβ mediated ALK1 or ALK5 activation. Id1 was found to be the target gene of the ALK1/Smad1/5 pathway while induction of plasminogen activator inhibitor-1 was activated only by ALK5/Smad2 pathway. Furthermore, ALK1 activated ECs are highly invasive but this property is lost if Id1 expression is specifically knocked-down. ECs invasiveness is highly dependent on αv integrin binding to its extracellular matrix (ECM) protein partner and the invasion requires proteolytic cleavage of the ECM by metalloproteases (MMPs). Hence, TGFβ/ALK1/Id1 pathway may promote invasion by modulating the expression or activity of integrins and MMPs that are well known components of the ECM. Timing and duration of TGFβ signalling are important specificity determinants for its effect on cellular behaviour. After binding to ALK1, TGFβ induces a transient phosphorylation of Smad1/5 but a stable phosphorylation of Smad2 via ALK5. Our studies indicate that Smad7 is potently induced by ALK1 signalling and may recruit a PP1α/TIMAP phosphatase complex to ALK1 to dephosphorylate the receptor and thereby turning off phosphorylation resulting in a temporal activation of TGFβ/ALK1-induced Smad1/5 pathway. This mechanism enables an efficient and tightly temporally controlled activation resulting in the dominance of ALK5 upon prolonged exposure to TGFβ. Bone morphogenetic protein (BMP) is a member of the TGFβ superfamily and signals through Smad1/5. The BMP/Smad1/5 pathway was found to potently activate the endothelium. Id1 was identified as an important BMP target gene in ECs and was sufficient and necessary for BMP-induced EC migration. These studies not only provide new insights into possible molecular mechanisms that underlie activation and quiescence of ECs during physiological angiogenesis but may also explain the vascular phenotypes observed in mice and humans with perturbed TGFβ signalling pathways.</p>
3

Paracrine and autocrine functions of PDGF in malignant disease

Sjöblom, Tobias January 2002 (has links)
Growth factors and their receptors are frequently activated by mutations in human cancer. Platelet-derived growth factor (PDGF)-B and its tyrosine kinase receptor, the PDGF β-receptor, have been implicated in autocrine transformation as well as paracrine stimulation of tumor growth. The availability of clinically useful antagonists motivates evaluation of PDGF inhibition in these diseases. In chronic myelomonocytic leukemia with t(5;12), parts of the transcription factor TEL and the PDGF β-receptor are fused, generating a constitutively signaling protein. Oligomerization and unique phosphorylation pattern of TEL-PDGFβR was demonstrated, as well as the transforming activity of TEL-PDGFβR, which was sensitive to PDGF β-receptor kinase inhibition. Dermatofibrosarcoma protuberans (DFSP) is characterized by a translocation involving the collagen Iα1 and PDGF B-chain genes. The COLIA1-PDGFB fusion protein was processed to mature PDGF-BB and transformed fibroblasts in culture. The PDGF antagonist STI571 inhibited growth of COLIA1-PDGFB transfected cells and primary DFSP cells in vitro and in vivo through induction of apoptosis. Paracrine effects of PDGF-DD, a ligand for the PDGF β-receptor, were evaluated in a murine model of malignant melanoma. PDGF-DD production accelerated tumor growth and altered the vascular morphology in experimental melanomas. A validated immunohistochemical procedure for PDGF β-receptor detection was established and applied to normal tissues and more than 280 tumor biopsies. Perivascular and stromal expression was detected in 90% and 50%, respectively, of human tumors. Recently, non-transformed cells in the tumor microenvironment have emerged as targets in cancer therapy. Selective sensitization of tumor fibroblasts to paclitaxel by STI571 was evaluated in vitro and in a xenograft model. Whereas neither drug alone caused growth inhibition, combination of the two significantly reduced tumor growth, suggesting anti-stromal therapy as a possible treatment modality in solid tumors.
4

TGFβ Signal Transduction in Endothelial Cells

Valdimarsdóttir, Gudrun January 2004 (has links)
Transforming growth factor β (TGFβ) is a multifunctional cytokine that is involved in many biological effects, such as proliferation, migration, differentiation and cell survival. TGFβ regulates cellular responses by binding to a heteromeric complex of type I and type II serine/threonine kinase receptors. The type I receptor, termed activin receptor-like kinase (ALK), acts downstream of the type II receptor and propagates the signal to the nucleus by phosphorylating receptor regulated Smads (R-Smads). The activated R-Smads can associate with the common partner Smad, Smad4, and this complex translocates to the nucleus where it participates in transcriptional regulation of target genes. TGFβ plays an important role in vascular morphogenesis. The aim of this study was to obtain more insight into the mechanisms by which TGFβ can act as an inhibitor or stimulator of angiogenesis Our findings show that in endothelial cells (ECs), TGFβ can activate two distinct type I receptor/Smad signalling pathways with opposite cellular responses. In most cell types, TGFβ signals via the TGFβ type I receptor, ALK5. However, ECs express a predominant endothelial type I receptor, named ALK1. Whereas the TGFβ/ALK1 signalling leads to activation, the TGFβ/ALK5 pathway results in an inhibition of the activation state. This suggests that TGFβ regulates the activation state of the endothelium via a fine balance between these two pathways. We identified genes that are specifically induced by TGFβ mediated ALK1 or ALK5 activation. Id1 was found to be the target gene of the ALK1/Smad1/5 pathway while induction of plasminogen activator inhibitor-1 was activated only by ALK5/Smad2 pathway. Furthermore, ALK1 activated ECs are highly invasive but this property is lost if Id1 expression is specifically knocked-down. ECs invasiveness is highly dependent on αv integrin binding to its extracellular matrix (ECM) protein partner and the invasion requires proteolytic cleavage of the ECM by metalloproteases (MMPs). Hence, TGFβ/ALK1/Id1 pathway may promote invasion by modulating the expression or activity of integrins and MMPs that are well known components of the ECM. Timing and duration of TGFβ signalling are important specificity determinants for its effect on cellular behaviour. After binding to ALK1, TGFβ induces a transient phosphorylation of Smad1/5 but a stable phosphorylation of Smad2 via ALK5. Our studies indicate that Smad7 is potently induced by ALK1 signalling and may recruit a PP1α/TIMAP phosphatase complex to ALK1 to dephosphorylate the receptor and thereby turning off phosphorylation resulting in a temporal activation of TGFβ/ALK1-induced Smad1/5 pathway. This mechanism enables an efficient and tightly temporally controlled activation resulting in the dominance of ALK5 upon prolonged exposure to TGFβ. Bone morphogenetic protein (BMP) is a member of the TGFβ superfamily and signals through Smad1/5. The BMP/Smad1/5 pathway was found to potently activate the endothelium. Id1 was identified as an important BMP target gene in ECs and was sufficient and necessary for BMP-induced EC migration. These studies not only provide new insights into possible molecular mechanisms that underlie activation and quiescence of ECs during physiological angiogenesis but may also explain the vascular phenotypes observed in mice and humans with perturbed TGFβ signalling pathways.
5

Bone Development and the Nervous System

Sisask, Gregor January 2009 (has links)
Innervation of bone influence bone modeling, growth and remodeling. Pro-inflammatory cytokines released after tissue trauma are recognized as neurotrophic factors as well as factors influencing bone formation. The Wnt signaling pathway, essential for cell migration during embryogenesis is found to influence bone formation during fracture healing. Alterations in growth and bone formation are seen in denervating disorders and in manipulated Wnt signaling. The aim of the present thesis was to study; sensory and autonomic innervation in the developing skeleton in rats and mice, a possible influence on bone formation in IL-4 and IL-13 depleted mice, and fracture healing in altered Wnt signaling by glycogen synthase-3β inhibition in rats. Bone innervation with sensory and autonomic nerves in modeling and growth follows a predictable and reproducible pattern both in the rat and in the mouse with sensory nerves occurring prior to autonomic nerves in areas with high chondrogenic and osteogenic activity. The time lag in occurrence between sensory and autonomic nerves indicates the importance of developmental timing between different nerve qualities in skeletal ontogeny. These findings give substantial morphologic support for important regulatory effects by the nervous system on bone development. Depletion of the anti-inflammatory cytokines IL-4 and IL-13 production in mice resulted in an inhibited autonomic innervation and lack of implant capillary ingrowth, studied by DXBM implants. In fracture healing no differences between IL-4/13 knockout mice and wild type mice were found concerning fracture callus parameters, biomechanical properties or histology except that sensory and autonomic nerves were found in the bone marrow in knockout mice but not in wild type mice. An altered canonical Wnt signaling was achieved by the GSK-3β inhibitor AR28. The increase in cytoplasmic β-catenin, due to inhibited degradation, resulted in a remarkable anabolic effect both on the fractured bone and on fracture healing. The histological analysis showed that the fractures healed without the usual formation of fibro-cartilage callus. This finding suggests that inhibition of GSK-3β inhibits the differentiation of chondrocytes and instead promotes the differentiation of mesenchymal progenitor cells into osteogenic cells.
6

Cell Behavior and the Role of Profilin

Li, Yu January 2008 (has links)
<p>Profilin is a key regulator of the microfilament system. It binds to actin monomers in a 1:1 complex, forming the profilin:actin complex, which is the major precursor of actin for filament formation in vivo. The distribution of profilin has been studied in a variety of cells. It is present not only in the cytoplasm but also in the nucleus. In the cytoplasm, it is evenly distributed in a dotted pattern, which is concentrated at the edge of advancing lamellipodia and in the perinuclear region. In the nucleus, it is localized to Speckles and Cajal bodies. However, the distribution of the profilin:actin has not been possible to establish due to the lack of specific reagents. In this thesis I present the localization of the profilin:actin complex and demonstrate the importance of profilin during cell migration.</p><p>The distribution of the profilin:actin complex was studied using affinity purified antibodies generated against a covalently coupled variant of profilin:actin in colocalization experiments with VASP and the Arp2/3 complex. In both cases, close co-distribution with profilin:actin was found. In order to study the role of profilin in vivo in migratory cells, I used the siRNA-technique to deplete profilin from motile mouse melanoma B16 cells. The particular cell line employed expressed actin fused to green fluorescent protein, which enabled imaging of live cells. Upon profilin-deficiency severe effects on cell behavior were observed, e.g. the cells lacked the ability to form characteristic broad lamellipodia at advancing edges, instead small protruding structures were generated and extended with a significantly reduced rate compared to control cells. Observations were also made suggesting that profilin regulates the expression of actin in mammalian cells.</p><p>A new experimental system for studies of myoblast fusion and subsequent myotube formation in vitro was also established during these studies. This will facilitate systematic studies of molecular processes connected to muscle development.</p>
7

Chromatin remodelling in Pol I and III transcription

Cavellán, Erica January 2006 (has links)
<p>Compaction of chromosomes in the eukaryotic cell is due to interactions between DNA and proteins and interactions between proteins. These two types of interaction form a dynamic structure, known as "chromatin". The condensation of chromatin must be carefully regulated, since the structure is an obstacle for factors that need access to the DNA. An extensive range of components, one group of which is the ATP-dependent chromatin remodel-ling complexes, controls the accessibility of DNA. These complexes have been studied in a variety of eukaryotic systems, and their functions in major events in the cell, such as replication, DNA-repair and transcription have been established, as have their roles in the assembly and maintenance of chromatin. All of the complexes contain a highly conserved ATPase, which belongs to the SWI2/SNF2 family of proteins, one group of which is known as the ISWI proteins. There are two forms of ISWI in human, known as "SNF2h" and "SNF2l".</p><p>We have identified a human SNF2h-assembly, B-WICH, that consists of SNF2h, William’s syndrome transcription factor (WSTF), nuclear myosin (NM1), and a number of additional nuclear proteins including the Myb-binding protein 1a (Myb bp1a), SF3b155/SAP155, the RNA helicase II/Guα, the proto-oncogene Dek, and the Cockayne Syndrome protein B (CSB). The 45S rRNA, 5S rRNA and 7SL RNA are all parts of the B-WICH assembly. The formation of B-WICH depends on active transcription, and is implicated in the regulation of both RNA transcription by both pol I and pol III. The B-WICH provides a link between RNA and the chromatin structure.</p>
8

Anti-Diabetic and Beta-Cell Protective Actions of Imatinib Mesylate

Hägerkvist, Robert January 2006 (has links)
<p>Type 1 diabetes is a disease resulting from the progressive immune-mediated destruction of insulin producing β-cells. In order to understand more about diabetes we need to understand the mechanisms governing β-cell death.</p><p>The leukemia drug Gleevec is a tyrosine kinase inhibitor that targets c-Abl. Surprisingly, Gleevec also counteracts Type 2 diabetes and acts as a cell death inhibiting agent, via inhibition c-Abl. Since both Type 1 and Type 2 diabetes are characterized by an increased β-cell death, and the role of c-Abl is unknown in β-cells, we wanted to investigate the following:</p><p>1.Does Gleevec act via inhibition of c-Abl in β-cells?</p><p>2.Can Gleevec treatment prevent beta-cell death and diabetes? </p><p>3.Which downstream signaling pathways are affected by Gleevec?</p><p>In paper I, in order to determine whether Gleevec acts by inhibiting c-Abl, we used RNA-interference. Interestingly, siRNA against c-Abl produced by recombinant Dicer mediate almost complete and non-toxic silencing of c-Abl mRNA in dispersed islet cells and conferred protection from streptozotocin and cytokines.</p><p>In paper II we show that Gleevec protects β-cells from nitric oxide, pro-inflammatory cytokines and streptozotocin in vitro and that Gleevec can prevent diabetes development in the NOD mouse and the streptozotocin-injected mouse. We also present the hypothesis that Gleevec induces a state resembling ischemic preconditioning.</p><p>Paper III presents an additional mechanism by which Gleevec might improve β-cell survival, i.e. via the inhibition of the downstream stress-activated protein kinase c-Jun N-terminal kinase (JNK), the activity of which has been implicated in β-cell death signaling pathways. </p><p>In paper IV we explore the interactions between the adaptor protein Shb and c-Abl. We presently show an association between Shb-c-Abl and that Shb is a substrate for the c-Abl kinase that might regulate stress-induced c-Abl activity.</p>
9

Intracellular Degradation of Insulin in Pancreatic Islets

Sandberg, Monica January 2007 (has links)
<p>There is a substantial intracellular degradation of insulin in pancreatic islets. This may be a physiological process, which, in correspondence with biosynthesis and secretion of insulin, would optimize the secretory granule content of the pancreatic β-cell. Insulin degradation may be effected by crinophagy, a process where secretory granules fuse with lysosomes. The general aim of this thesis was to investigate possible control mechanisms for intracellular degradation of insulin and crinophagy in isolated pancreatic islets. In islets incubated at low glucose concentrations there was an insulin degradation and this correlated well with the ultrastructural findings, where a lot of secondary lysosomes containing secretory granules were found. In islets incubated at a high glucose concentration there was no insulin degradation and the ultrastructure revealed only a few insulin granules and mostly primary lysosomes, indicating that there was no crinophagic activity. With interleukin-1β the islet insulin degradation, nitric oxide production and prostaglandin E2 production were increased. The effects were abolished either by inhibition of inducible nitric oxide synthetase by aminoguanidine, or by the specific cyclooxygenase-2 inhibitor rofecoxib. These findings indicate that there is a connection between the intracellular degradation of insulin, production of nitric oxide and cyclooxygenase-2 activation. The nitric oxide donor DETA/NO enhanced the intracellular degradation of insulin and cyclooxygenase-2 activation with subsequent production of prostaglandin E2, suggesting that the link between nitric oxide and insulin degradation may be a cyclooxygenase-2 activation and subsequent prostaglandin E2 production. With corticosterone added to islet incubations the insulin degradation decreased, which paralleled with a diminished crinophagy and formation of prostaglandin E2. With progesterone there was instead an increase in insulin degradation and crinophagy and an increased formation of prostaglandin E2. These effects were abolished by mifepristone, an inhibitor of intracellular corticosterone and progesterone receptors. This suggests that the effects from these steroids are exerted via a change in islet gene expression and cyclooxygenase-2 activation. It was also concluded that phospholipase A2 is involved in insulin degradation and that the isoform secretory phospholipase A2 may be involved in triggering this process. This suggests that cyclooxygenase-2 activation with a subsequent production of prostaglandin E2 may provide a control mechanism for intracellular degradation of insulin and crinophagy in pancreatic islets.</p>
10

Chromatin remodelling in Pol I and III transcription

Cavellán, Erica January 2006 (has links)
Compaction of chromosomes in the eukaryotic cell is due to interactions between DNA and proteins and interactions between proteins. These two types of interaction form a dynamic structure, known as "chromatin". The condensation of chromatin must be carefully regulated, since the structure is an obstacle for factors that need access to the DNA. An extensive range of components, one group of which is the ATP-dependent chromatin remodel-ling complexes, controls the accessibility of DNA. These complexes have been studied in a variety of eukaryotic systems, and their functions in major events in the cell, such as replication, DNA-repair and transcription have been established, as have their roles in the assembly and maintenance of chromatin. All of the complexes contain a highly conserved ATPase, which belongs to the SWI2/SNF2 family of proteins, one group of which is known as the ISWI proteins. There are two forms of ISWI in human, known as "SNF2h" and "SNF2l". We have identified a human SNF2h-assembly, B-WICH, that consists of SNF2h, William’s syndrome transcription factor (WSTF), nuclear myosin (NM1), and a number of additional nuclear proteins including the Myb-binding protein 1a (Myb bp1a), SF3b155/SAP155, the RNA helicase II/Guα, the proto-oncogene Dek, and the Cockayne Syndrome protein B (CSB). The 45S rRNA, 5S rRNA and 7SL RNA are all parts of the B-WICH assembly. The formation of B-WICH depends on active transcription, and is implicated in the regulation of both RNA transcription by both pol I and pol III. The B-WICH provides a link between RNA and the chromatin structure.

Page generated in 0.0532 seconds