• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Progressive development of aberrant smooth muscle cell phenotype in abdominal aortic aneurysm disease

Riches-Suman, Kirsten, Clark, E., Helliwell, R.J., Angelini, T.G., Hemmings, K.E., Bailey, M.A., Bridge, K.I., Scott, D.J.A., Porter, K.E. 13 December 2017 (has links)
Yes / Abdominal aortic aneurysm (AAA) is a silent, progressive disease with high mortality and increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (5cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm. Human AAA-SMC presented a secretory phenotype and expressed elevated levels of differentiation marker miR-145 (2.2-fold, P<.001) and senescence marker SIRT-1 (1.3-fold, P<.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine aneurysmal cells were frequently multi-nucleated (3.9-fold, P<.001 and 1.8-fold, P<.01 respectively, versus control cells) and displayed aberrant nuclear morphology. Human AAA-SMC exhibited higher levels of the DNA damage marker H2AX (3.9-fold, P<.01 vs. control SMC). These features did not correlate with patients’ chronological age; and are therefore potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control and aneurysmal) were indistinguishable from one another across all parameters. The principal limitation of human studies is tissue availability only at end-stage disease. Refinement of a porcine bioreactor model would facilitate study of temporal modulation of SMC behaviour during aneurysm development and potentially identify therapeutic targets to limit AAA progression. / Supported in part by a grant from the Leeds Teaching Hospitals Charitable Foundation (9R11/8002)
22

Anti-oxidative and pro-oxidative effects of curcuminoids on cellular senescence in aging and cancer

Li, Ying Bo January 2011 (has links)
University of Macau / Institute of Chinese Medical Sciences
23

Estrogen receptor involvement in the response of human keratinocytes to ultraviolet B irradiation

Farrington, Daphne L. January 2014 (has links)
The signaling mechanisms involved in UVB-induced skin cancer are complex and although the scope of this work is inherently limited in focus, the findings may provide insight into how estrogen receptor signaling impacts cell growth, senescence, and apoptosis to protect keratinocytes. Additional signaling due to E2-activation of the estrogen receptor may provide back-up or redundant pathways in response to UVB.
24

PDK regulated Warburg effect protects differentiated adipocytes against ROS

Roell, William Christopher 06 October 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Literature has demonstrated the ability of human adipose tissue to generate large amounts of lactate. However, it is not understood why adipose tissue produces lactate, how the production of lactate is regulated, and what potential benefit this has to the adipocyte or the organism. We first characterized a human model of adipogenic differentiation with minimal donor to donor variability to assess metabolic changes associated with mature adipocytes compared to their precursors. Indeed, similar to what was observed in human clinical studies, the differentiated adipocytes demonstrated increased lactate production. However, the differentiated adipocytes compared to their precursors (preadipocytes or ASCs) demonstrate an aerobic glycolysis-like (also called Warburg effect-like) increase in glycolysis characterized by a 5.2 fold increase in lactate production in normoxic conditions (atmospheric oxygen tension). Remarkably, this increase in lactate occurred even though the differentiated adipocytes simultaneously demonstrate an increase in oxidative capacity. This low fraction of oxidative capacity coupled with increased lactate production indicated regulation of oxidative rates most likely at the point of pyruvate conversion to either acetyl-CoA (oxidative metabolism) or lactate (glycolytic metabolism). To investigate the potential regulation of this metabolic phenotype, PDK isoform expression was assessed and we found PDK 1 and 4 transcript and protein elevated in the differentiated cells. Non-selective pharmacologic inhibition of the PDKs resulted in decreased lactate production, supporting a regulatory role for PDK in modulation of the observed Warburg effect. PDK inhibition also resulted in increased ROS production in the adipocytes after several hours of treatment and a decrease in cell viability when PDK inhibition was carried out over 36 hours. The resulting loss in viability could be rescued by antioxidant (Tempol) treatment, indicating the decrease in viability was ROS mediated. Similar to what is seen in cancer cells, our data demonstrate that differentiation of human adipocytes is accompanied by a PDK-dependent increase in glycolytic metabolism (Warburg effect) that not only leads to lactate production, but also seems to protect the cells from increased and detrimental generation of ROS.

Page generated in 0.0428 seconds