• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Boij-Söderberg Decompositions, Cellular Resolutions, and Polytopes

Sturgeon, Stephen 01 January 2014 (has links)
Boij-Söderberg theory shows that the Betti table of a graded module can be written as a linear combination of pure diagrams with integer coefficients. In chapter 2 using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, their quotient rings, and for Gorenstein rings whose resolution has essentially at most two linear strands. We also establish a structural result on the decomposition in the case of quasi-Gorenstein modules. These results are published in the Journal of Algebra, see [25]. In chapter 3 we provide some further results about Boij-Söderberg decompositions. We show how truncation of a pure diagram impacts the decomposition. We also prove constructively that every integer multiple of a pure diagram of codimension 2 can be realized as the Betti table of a module. In chapter 4 we introduce the idea of a c-polar self-dual polytope. We prove that in dimension 2 only the odd n-gons have an embedding which is polar self-dual. We also define the family of Ferrers polytopes. We prove that the Ferrers polytope in dimension d is d-polar self-dual hence establishing a nontrivial example of a polar self-dual polytope in all dimension. Finally we prove that the Ferrers polytope in dimension d supports a cellular resolution of the Stanley-Reisner ring of the (d+3)-gon.

Page generated in 0.1034 seconds