Spelling suggestions: "subject:"cellular mobility"" "subject:"acellular mobility""
1 |
L’homéostasie des métaux chez la bactérie Escherichia coli : de l’analyse générale d’un stress sur l’expression des gènes, à la compréhension des mécanismes moléculaires / Metal homeostasis in the bacterium E. coli : from the transcriptomic analysis of a stress, to the understanding of the molecular mechanismsGault, Manon 12 December 2014 (has links)
Les métaux sont indispensables à la vie cellulaire car ils sont constitutifs des protéines. Les ions Ni, font partie intégrante des hydrogénases, enzymes primordiales pour le métabolisme énergétique. Paradoxalement, en excès, les métaux deviennent toxiques pour la cellule. Les bactéries luttent contre cette toxicité en produisant des systèmes de résistance ou d’adaptation. Les cellules procaryotes peuvent équilibrer les teneurs en métaux en contrôlant leur entrée ou leur efflux grâce à la biogenèse de transporteurs spécifiques. L’objectif de ces travaux de thèse a consisté à comprendre les mécanismes principaux permettant à la bactérie modèle Escherichia coli de s’adapter à de fortes variations en ions métalliques, en prenant comme modèle un stress provoqué par un excès d’ions Ni. Afin d’appréhender l’ensemble de la réponse cellulaire, l’effet de ce stress a été évalué sur l’expression de l’ensemble des gènes d’E. coli par des approches de transcriptomique couplées à une validation fonctionnelle. L’excès d’ions Ni induit le système d’efflux RcnRAB. En plus de la pompe d’efflux RcnA, ce système comporte une protéine périplasmique, RcnB, qui module le trafic des ions Ni ou Co via RcnA. Ces travaux ont montré que RcnB n’interagit pas avec les ions Ni ou Co mais de façon inattendue avec les ions Cu, définissant une nouvelle classe de cupro-protéines. Nous montrons que si RcnB n’intervient pas dans le contrôle de l’homéostasie du Cu, l’interaction avec ces ions est essentielle à sa fonction dans la modulation de l’efflux des ions Ni et Co. Ces résultats suggèrent des connexions entre les différents systèmes de maintien des homéostasies métalliques. Les résultats d’analyse transcriptomique montrent une forte modulation de l’expression des gènes impliqués dans les homéostasies du Cu et du Fe en présence d’un excès d’ions Ni, corrélée à une augmentation cellulaire de leur teneur mesurée par spectrométrie plasma. Ces métaux sont responsables de la production d’espèces réactives oxygénées entraînant de sérieux dégâts cellulaires, une des cibles privilégiée étant l’ADN. Nous montrons que les ions Ni ne provoquent pas de cassures de l’ADN et n’ont pas d’effet mutagène, par contre ils provoquent une modification importante de l’état de repliement de l’ADN. Nous proposons que ce relâchement de l’ADN soit dû à l’induction indirecte d’un stress oxydant. Ces travaux ont aboutis à l’identification du premier système de transport spécifique des ions Ni à travers la membrane externe chez E. coli. En résumé, un excès d’ions Ni affecte les systèmes spécifiques d’entrée et d’efflux des ions métalliques troublant les teneurs intracellulaires des autres métaux comme le Cu et le Fe. Ces métaux sont en partie responsables de la production de ROS létaux pour les cellules bactériennes. L’excès de Ni va induire une profonde reprogrammation génétique entraînant des changements physiologiques multifactoriels importants pour la survie bactérienne dans ces conditions de stress. / Metals are necessary components of all living cells because they are constitutive of many essential proteins. Nickel, for example, is required for hydrogenase activity, which is essential for the energetic metabolism. However, metals become toxic when present in excess. Prokaryotes can overcome this toxicity by using several systems of resistance or adaptation. Import systems must be repressed whereas export pathways activated. This work consists in bringing out the principal strategies established by Escherichia coli for accommodating a stress caused by an excess of Ni ions. In order to understand the cellular response, the effect of nickel stress has been evaluated in E. coli by a transcriptomic approach coupled to functional validation. Excess Ni induces the biosynthesis of the efflux system RcnRAB. In addition to the RcnA efflux pump, this system contains a periplasmic protein called RcnB. This protein modulates Ni and Co traffic. RcnB displayed no Ni or Co binding capacity but was shown to bing Cu ions. RcnB was characterized as a new family of cupro-protein. We showed that RcnB is not involved in the control of Cu homeostasis but that Cu binding is essential for its Ni and Co efflux function. Our results suggest connections between different systems of metals homeostasis. Indeed, RNA-Seq data analysis revealed that exposure to Ni induces strong variations of the expression of genes involved in Cu and Fe homeostasis. Our results correlated with an increase of intracellular Cu and Fe pools as assayed by plasma spectrometry. Both metals are involved in reactive oxygen species (ROS) production and generate serious cell damages, targeting DNA for example. We showed that Ni ions do not trigger DNA breakage and are not mutagenic. On the other hand, Ni stress has a strong effect on DNA folding. We propose that excess Ni causes DNA relaxation by the indirect induction of oxidative stress. Furthermore, we identified the first transport system specific for Ni ions localized in the outer membrane. This system, composed of YddA and YddB, allows the transfer of Ni ions accross the two membranes. The genes encoding these proteins are expressed in conditions evocative of a biofilm lifestyle. Moreover, this work showed that Ni stress promotes biofilm growth instead of a planktonic one. Indeed, in the presence of an excess of Ni ions, genes encoding flagella are down regulated whereas genes encoding adherence structures are up regulated. To conclude, an excess of Ni ions affects specific metals import and efflux systems unbalancing intracellular Fe and Cu contents. These metals in turn generate ROS that are toxic for the bacterial cells. Ni stress induces large transcriptomic modifications causing major physiological changes important for the survival of the bacteria.
|
Page generated in 0.0608 seconds