• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 55
  • 23
  • 17
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 4
  • 2
  • Tagged with
  • 565
  • 565
  • 565
  • 112
  • 109
  • 106
  • 103
  • 71
  • 66
  • 61
  • 56
  • 56
  • 55
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Molecular analysis of the elements of a g-protein coupled receptor signal transduction pathway of the shrimp Metapenaeus ensis

Tiu, Hiu-kwan, 刁曉君 January 2003 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
42

Physiological and cellular characterization of a plant natriuretic peptide

Maqungo, Monique Nonceba January 2005 (has links)
Plants in the field are exposed to multiple stresses and their response to these various stresses determines their capacity to survive. Plants can use multiple signaling pathways and signals to mediate their response / for example, at least four different signal pathways have been identified for water-deficit stress (Shinozaki and Yamaguchi-Shinozaki, 1997 / Xiong et al., 2002). Different forms of stress may activate or utilize the same components, including proteins and other signaling molecules. Signaling molecules such as jasmonic acid (JA) are involved in multiple stress response and development in plants (Creelman and Mullet, 1995, 1997 / Turner et al., 2002). However it is the specific combination of various components of the signaling network coupled with spatial and temporal factors that allows the plant to mount a directed response to any given stress factors. Systemic defense responses thus provide an attractive model for the study of cell-to-to cell signal transduction pathways that operates over long distances (Lucas and Lee, 2004).<br /> <br /> Cellular and physiological evidence suggest the presence of a novel class of systemic mobile plant molecule that is recognized by antibodies against vertebrate atrial natriuretic peptides (ANPs). It has been demonstrated that a recombinant Arabidopsis thaliana natriuretic peptide analogue (AtPNP-A) molecule can induce osmoticumdependent water uptake into protoplast at nanomolar concentrations thus affecting cell volume and hence plant growth. In this study we confirm that active recombinant protein causes swelling in Arabidopsis mesophyll cell protoplasts (MCPs).
43

Development and signal transduction in Dictyostelium

Kim, Hyun Ji January 1999 (has links)
Dictyostelium, is a simple eukaryote that multiplies as separate amoebae. However when nutrients are no longer available it embarks on a developmental programme in which the amoebae collect together by chemotaxis and the resulting aggregates eventually transform into fruiting bodies consisting of a cluster of spores held up on a cellular stalk. The entire process of development normally takes about 24 hours. However there are mutants, termed rapidly developing mutants (rde) which complete development in about two-thirds of this time. RdeA null mutants have been reported to have elevated levels of cyclic AMP that may lead to increased activity of the enzyme, cAMP dependent protein kinase (PKA). I started my work by measuring total cAMP levels in an rdeA mutant along with an aca-/rdeA- double mutant that is expected to have very low level of cAMP due to the absence of the adenylyl cyclase, AC A. Two Dictyostelium adenylyl cyclases were known at the beginning of my work; one is AC A the aggregative enzyme, and the other ACG, expressed only during spore germination. Contrary to expectation, I detected cAMP in aca-/rdeA cells. This raised the question of which enzyme was responsible for producing this cAMP. In collaboration with Dr.Pauline Schaap, I discovered a novel adenylyl cyclase that I initially detected in rdeA and regA mutants but not in wild-type cells. The product of the rdeA gene, RDEA was thought to be an H2-module histidine phosphotrasferase of the kind acting in multi-step phosphorelays. Similarly REGA was believed to be a response regulator associated with a cAMP-phosphodiesterase. It had been proposed that RDEA phosphorylates REGA in a multi-step phosphorelay and it had been shown that it is the phosphorylated form of REGA that is active as a cAMP-PDE. I therefore thought that cAMP produced by the novel AC could be protected in rdeA mutants by the absence of the REGA cAMP-PDE activity and this idea was supported by my finding that the enzyme activity could also be detected in wild-type (aca-) cells when REGA-PDE was inhibited by IBMX. In order to investigate further the proposed phosphorelay model, I tested for possible interaction between RDEA and REGA using the yeast two-hybrid system and also measured intracellular cAMP-phosphodiesterase activity in rdeA and regA mutants. I found that the interaction between RDEA and REGA appeared to be too transient to be detected in the two-hybrid system. In addition rdeA and regA mutants seemed to have levels of intracellular cAMP-phosphodiesterase activity similar to wild type. However REGA-PDE activity measured specifically by immuno-precipitation was completely absent in the regA mutant. It therefore appeared that there is another intracellular cAMP-phosphodiesterase, in addition to the REGA PDE, in Dictyostelium and that the latter cannot be easily detected in total cell lysates. One possible explanation is that the novel adenylyl cyclase exists together with REGA in a complex (that may also include PKA) and that REGA PDE preferentially destroys the cAMP made by the novel adenylyl cyclase. I conclude that rdeA and regA mutants may develop rapidly due to high PKA activity induced by the accumulation of cAMP made by the novel AC when the REGA cAMP-PDE activity is absent.
44

Phylogenetic diversity of fungal stress signaling pathways

Nikolaou, Elissavet January 2008 (has links)
No description available.
45

Localization of chemical and electrical synapses in the retina

Unknown Date (has links)
The amphibian retina is commonly used as a model system for studying function and mechanism of the visual system in electrophysiology, since the neural structure and synaptic mechanism of the amphibian retina are similar to higher vertebrate retinas. I determined the specific subtypes of receptors and channels that are involved in chemical and electrical synapses in the amphibian retina. My study indicates that glycine receptor subunits of GlyRº1, 3 and 4 and glutamate receptor subunit of GluR4 are present in bipolar and amacrine dendrites and axons to conduct chemical synapses in the retinal circuit. I also found that the gap junction channel, pannexin 1a (panx1a), is present in cone-dominated On-bipolar cells and rod-dominated amacrine processes possibly to connect rod-and cone-pathway in the inner retina. In addition, panx1a may form hemi-channels that pass ATP and Ca2+ signals. The findings of my study fill the gap of our knowledge about the subtypes of neurotransmitter receptors and gap junction channels conducting visual information in particular cell types and synaptic areas. / by Yufei Liu. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
46

Molecular Mechanisms Of CaV2.1 Expression and Functional Organization at the Presynaptic Terminal

Unknown Date (has links)
Neuronal circuit output is dependent on the embedded synapses’ precise regulation of Ca2+ mediated release of neurotransmitter filled synaptic vesicles (SVs) in response to action potential (AP) depolarizations. A key determinant of SV release is the specific expression, organization, and abundance of voltage gated calcium channel (VGCC) subtypes at presynaptic active zones (AZs). In particular, the relative distance that SVs are coupled to VGCCs at AZs results in two different modes of SV release that dramatically impacts synapse release probability and ultimately the neuronal circuit output. They are: “Ca2+ microdomain,” SV release due to cooperative action of many loosely coupled VGCCs to SVs, or “Ca2+ nanodomain,” SV release due to fewer more tightly coupled VGCCs to SVs. VGCCs are multi-subunit complexes with the pore forming a1 subunit (Cav2.1), the critical determinant of the VGCC subtype kinetics, abundance, and organization at the AZ. Although in central synapses Cav2.2 and Cav2.1 mediate synchronous transmitter release, neurons express multiple VGCC subtypes with differential expression patterns between the cell body and the pre-synapse. The calyx of Held, a giant axosomatic glutamatergic presynaptic terminal that arises from the globular bushy cells (GBC) in the cochlear nucleus, exclusively uses Cav2.1 VGCCs to support the early stages of auditory processing. Due to its experimental accessibility the calyx provides unparalleled opportunities to gain mechanistic insights into Cav2.1 expression, organization, and SV release modes at the presynaptic terminal. Although many molecules are implicated in mediating Cav2.1 expression and SV to VGCC coupling through multiple binding domains on the C-terminus of the Cav2.1 a1 subunit, the underlying fundamental molecular mechanisms remain poorly defined. Here, using viral vector mediated approaches in combination with Cav2.1 conditional knock out transgenic mice, we demonstrate that that there a two independent pathways that control Cav2.1 expression and SV to VGCC coupling at the calyx of Held. These implications for the regulation of synaptic transmission in CNS synapses are discussed. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
47

Investigating The Role Of Signaling Pathways In Adult Stem Cells Governed By Population Asymmetry

Melamed, David Eric January 2018 (has links)
Adult stem cells are vital to animal biology, tasked with replenishing cells in a variety of tissue types. Historically, there have been two contrasting models of stem cell behavior, “single-cell asymmetry,” where each stem cell is generally long lived and is responsible for perpetual daughter (non-stem) cell production, and “population asymmetry,” where a group of stem cells maintain population numbers while producing non-stem cell daughters, but individual stem cells undergo stochastic competition leading to frequent loss or amplification of individual lineages. Our work examines Drosophila ovarian Follicle Stem Cells (FSCs), which are somatic adult stem cells organized as a population of 14-16 cells within each germarium. FSCs are responsible for the production of two distinct somatic daughter cell types at opposite borders of the stem cell population. The FSCs are arranged in three anteroposterior layers; posterior “layer 1” FSCs divide faster and directly produce Follicle Cells (FCs), while anterior “layer 2 and 3” FSCs divide more slowly and give rise to Escort Cells (ECs). We have examined how signaling pathways contribute individually to FSC behavior, using clonal analysis to manipulate individual FSC genotypes and subsequently determine how autonomous FSC properties and competition among FSCs is affected. Our data indicate that Janus Kinase/Signal Transducers and Activators of Transcription (JAK-STAT) and Wnt pathways are primarily responsible for regulating location, proliferation and differentiation in FSCs. The activities of Hedgehog (Hh), Hippo (Hpo), and Phosphoinositide 3-kinase (PI3K) pathways are also shown to be important for FSC competition.
48

Isolation and characterization of Le. MAPK and Le. NikI in lentinula edodes related to development. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Development in shiitake mushroom, Lentinula edodes, is a unique process and studies of the molecular basis of this process may lead to improvement in mushroom cultivation. Previous studies have identified a number of signal transduction genes related to mushroom development, but those genes have not been well characterized. The present work characterized a developmentally regulated MAP kinase, Le.MAPK, Histidine kinase Le.nik1 and their interacting partners in the signal transduction pathways. / Histidine kinase Le.nik1 is the first Histidine kinase gene found in basidiomyces by differential display by RAP-PCR and it has a high sequence homology with the Histidine kinase from C. albicans and B. cinerea, which may be related to development and stress responses. A 7.8kb genomic DNA sequence and the full-length ORF of 6.29kb cDNA sequence of the two-component histidine kinase Le.nik1 has been determined. Northern blot analysis and real time RT-PCR showed that the transcript expression level of Le.nik1 increases from mycelium to mature fruiting body. This suggests that Le.nik1 plays an essential role in fruiting body development. In situ hybridization of different fruiting body stage demonstrated the transcript localization of Le.nik1 in the developing hymenophore and trama cells, which reveals Le.nik1's role in fruiting body development. Real time RT-PCR results suggest the relationship between Le.nik1 and dicarboximide fungicides and oxidant. Yeast two-hybrid studies of Le.nik1 response regulator yields two novel interacting protein and they may also be related to fruit body development as shown by real-time RT-PCR and in situ hybridization. / Le.MAPK gene was isolated and identified by RNA fingerprinting of differentially expressed genes. Le. MAPK shows high sequence identity to the MAP kinase in other fungus includes U. maydis, N. crassa and S. cerevisiae. Le.MAPK was found to be interacting with Le.DRMIP from the yeast two hybrid analyses. Le.DRMIP is a novel gene with a predicted N-terminal mitochondrial signal peptide, suggesting that their interactions relate to the mitochondrial signaling pathway. The expression profiles of these two genes reveal their importance in fruiting body initiation and development; the Le.DRMIP transcript is localized predominantly in the developing young fruit body and gills, which further signifies its role in cell differentiation during mushroom development. These results suggest a model in which Le.MAPK and Le.DRMIP regulate mitochondrial signal transduction during fruit body development in L. edodes. / Through the studies of Le. MAPK and Le.nik1 , this work enhances our knowledge of the role and functions of these signal transduction genes in mushroom development. These studies can also help us to investigate the biological function of these signal transduction genes in fungi and other organisms. / Szeto Ying Ying. / "October 2006." / Adviser: Hoi Shan Kwan. / Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5750. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 126-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
49

Iron signalling pathways of Pseudomonas aeruginosa

Mettrick, Karla Adelle, n/a January 2008 (has links)
The pathogenic bacterium Pseudomonas aeruginosa uses a variety of highly efficient chelating compounds (siderophores) to acquire sufficient iron for growth and virulence. These siderophores can either be endogenous or acquired from exogenous sources such as other bacteria or fungi. The transport of the endogenous siderophore pyoverdine activates a signal-transduction pathway that increases the synthesis of both the ferripyoverdine receptor protein (FpvA) and pyoverdine itself. Signal-transduction systems similar to this have three specific proteins involved: a receptor protein specific for one siderophore in the outer membrane, an anti-sigma factor in the cytoplasmic membrane and a sigma factor that activates gene expression in the cytoplasm. The aim of the research presented in this thesis was to study the roles of the proteins in three different iron uptake and signalling pathways of P. aeruginosa. The substrates for each receptor protein were confirmed and the roles of each protein in the pathways were compared to the P. aeruginosa pyoverdine signalling pathway. The pyoverdine, desferrioxamine and ferrichrome transport pathways were studied to find whether interactions occur between them and if so, the mechanism(s) for that interaction. Furthermore, a technique for analysing gene expression of P. aeruginosa in sputum from the cystic fibrosis (CF) lung was developed. This technique was subsequently used to study the levels of iron responsive gene expression. The receptor, sigma factor and anti-sigma factors were all found to have a role in the siderophore-induced expression of their own signalling pathway. The experimental data provide evidence of similarities in the roles of the sigma and receptor proteins within each pathway but different roles for the anti-sigma factors. In the absence of the cognate sigma factor or anti-sigma factor the expression of the desferrioxamine and ferrichrome receptors could not be upregulated. Without its cognate sigma factor fpvA could no longer be upregulated in the presence of pyoverdine. However, unlike the other systems, in the absence of the cognate anti-sigma factor, expression of fpvA was always observed. This is consistent with the anti-sigma factors being required for the activity of the cognate sigma factor in the ferrichrome and desferrioxamine signalling pathways but not the pyoverdine signalling pathway. The siderophore signalling pathways were found to be upregulated in the presence of multiple siderophores, but generally to a lesser extent than if only one siderophore was available. This suggests that in the presence of multiple siderophores, P. aeruginosa uses all available iron chelators. The study of the role of the receptor, sigma factor and anti-sigma factor into these effects indicate sigma factor competition for RNA polymerase has a major role in the effects of multiple siderophores on pathways upregulation. The gene expression studies of P. aeruginosa in sputum from the lungs of CF patients provided support for the hypothesis that the bacteria were growing in an environment where iron levels were sufficient for bacterial growth, but not storage of iron. The expression of the sigma factor gene pvdS that is required for pyoverdine synthesis was studied because expression of this gene is a sensitive reporter of intracellular iron levels. It was found to be downregulated in bacteria in sputum compared to laboratory grown bacteria. This result suggests the bacteria are inhabiting a more iron-replete environment within the lung. This finding advances our understanding of the CF lung environment and the impact it has on P. aeruginosa infection. This knowledge has medical implications for the development of novel therapies to combat P. aeruginosa infection.
50

Regulation of phospholipase C-beta isozymes by calmodulin

McCullar, Jennifer Star 22 September 2005 (has links)
Graduation date: 2006

Page generated in 0.1095 seconds