• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les mécanismes de la neuropathie auditive AUNA1 / Mechanisms of the auditory neuropathy AUNA1

Surel, Clément 19 December 2016 (has links)
La neuropathie auditive est une forme de surdité caractérisée par une atteinte des cellules ciliées internes (qui détectent les ondes sonores et les transforment en message nerveux) et/ou des neurones afférents primaires (qui véhiculent les messages nerveux jusqu'au noyau cochléaire), associée à une activité normale des cellules ciliées externes (qui amplifient les ondes sonores). AUNA1 est la première neuropathie auditive héréditaire à avoir été décrite. Elle est causée par une mutation ponctuelle située dans le promoteur du gène DIAPH3, résultant en une surexpression de DIAPH3. La protéine DIAPH3, un membre de la famille des formines, est connue pour promouvoir la nucléation et l’élongation des filaments d’actine ainsi que la stabilisation des microtubules. Nous avons étudié les mécanismes d’AUNA1 à partir d’un modèle murin transgénique surexprimant le gène diap3, l’orthologue murin de DIAPH3. Les souris transgéniques développent une surdité dont les caractéristiques sont semblables à celles d’AUNA1. Cette surdité est due à une perte d’activité des cellules ciliées internes. L’activité synaptique et les courants potassiques de ces cellules ne sont pas altérés. En revanche, la microscopie électronique révèle une fusion des stéréocils (expansions cytoplasmiques qui permettent la détection des ondes sonores) et une déformation de la plaque cuticulaire (plateforme qui assure l’ancrage des stéréocils). Par la technique d’immunomarquage, nous avons mis en évidence une invasion de la plaque cuticulaire par des microtubules. Enfin, nous avons démontré que la protéine Diap3 est localisée dans la plaque cuticulaire des cellules ciliées internes, suggérant ainsi que la surexpression de diap3 provoque un remodelage du réseau de microtubule des cellules ciliées internes, à l’origine de la surdité AUNA1. / Auditory neuropathy is a type of deafness characterized by an alteration of the inner hair cells (which detect the acoustic waves and transform them into neural messages) and/or of the primary afferent neurons (which conduct the neural messages to the cochlear nucleus), associated with a normal activity of the outer hair cells (which amplify the acoustic waves).AUNA1 is the first hereditary auditory neuropathy which has been described. It is caused by a point mutation in the promoter of the DIAPH3 gene, resulting in an overexpression of DIAPH3. The DIAPH3 protein, a formin family member, is known to promote the actin filament nucleation and elongation and to stabilize the microtubules.We studied the AUNA1 mechanisms using a transgenic mouse model which overexpresses the diap3 gene, the mouse homologue of DIAPH3. Transgenic mice develop a deafness whose characteristics are similar to the ones of AUNA1. The hearing loss is due to a defect in the inner hair cell activity. The synaptic activity and the potassium currents of these cells are not altered. However, electron microscopy reveals a fusion of the stereocilia (cytoplasmic expansions which detect the acoustic waves) and a disruption of the cuticular plate (plateform which maintains stereocilia). By immunolabeling, we showed an invasion of the cuticular plate by microtubules. Eventually, we demonstrated that Diap3 is located in the inner hair cell cuticular plate, suggesting that the overexpression of diap3 provokes a remodeling of the inner hair cell microtubule network, underlying the AUNA1 deafness.
2

Identification de nouvelles protéines des synapses à ruban / Synaptic machinery at the hair cell ribbon synapse

Mahaman Bachir Dodo, Sahia 21 November 2014 (has links)
Les cellules sensorielles auditives, les cellules ciliées internes (CCI), transforment les ondes sonores en message nerveux. Les synapses des CCI se distinguent de celles du système nerveux par leur anatomie. En effet, les synapses des CCI sont dotées d'un organite appelé ruban synaptique. Ce dernier a pour fonction de concentrer les vésicules synaptiques à proximité des zones actives. Il est important de souligner qu'un déficit de la libération synaptique à la première synapse auditive est à l'origine de surdités chez l'homme. Si la physiologie des synapses à rubans des cellules ciliées a été intensivement étudiée, la composition moléculaire des ces synapses reste en grande partie inconnue. L'objectif de cette thèse était donc d'isoler les protéines clefs de la machinerie synaptique. Pour ce faire, nous avons utilisé la technique du double hybride à partir d'une banque d'ADN complémentaire de cochlée et de la protéine Ribeye, composant majeur des rubans, comme appât. La difficulté majeure de notre étude provient de la structure de Ribeye, qui est constitué par deux domaines A et B. Tandis que le domaine A est dirigé vers le cœur du ruban synaptique et aurait une fonction structurale, le domaine B est fortement homologue au facteur de transcription Ctbp2. Ainsi, nous avons identifié plusieurs candidats comme étant des facteurs de transcription. Ces derniers interagissent probablement avec Ctbp2 dans le noyau. Nos résultats obtenus soulignent la difficulté d'identifier des protéines d'interactions, inhérente à l'utilisation de Ribeye comme appât. Parmi les autres candidats, nous avons isolés des composants du système de l'ubiquitine, suggérant une régulation ubiquitine-dépendante de l'activité ou de la structure des rubans synaptiques. / Inner hair cells (IHCs) are the sensory cells of the cochlea, the organ of hearing. IHCs transduce sound stimulation into the release of glutamate onto the afferent auditory nerve fibers. To achieve this task, IHCs harbor at their presynaptic side a large organelle, the so-called synaptic ribbon, surrounded by a monolayer of glutamate-filled synaptic vesicles. Exocytosis of glutamate at the hair cell ribbon synapse seems to be unconventional as the synaptic machinery, depicted so far, differs from most of the nervous system synapses. The goal of this work was to identify new members of the synaptic machinery of the hair cell ribbon synapse. To do so, we took advantage of the yeast two-hybrid system using a cochlea cDNA library as the prey and Ribeye (the major ribbon component) as the bait. Transcription factors were highly represented in our screening assay, most probably because Ribeye is highly homologous to the transcription factor Ctbp2. They probably interact with Ctbp2 in the nucleus. Our results underlined the difficulty to identify protein interactions because of the nature of Ribeye itself. However, we found ubiquitin system components among the other candidates, suggesting an ubiquitin-dependent regulation of the activity and/or structure of synaptic ribbons.

Page generated in 0.0676 seconds