Spelling suggestions: "subject:"cellulose"" "subject:"acellulose""
61 |
Production, characterization and evaluation of fungal cellulases for effective digestion of celluloseMokatse, Khomotso January 2013 (has links)
Thesis (M.Sc. (Microbiology)) --University of Limpopo, 2013 / The production of cellulase is a key factor in the hydrolysis of cellulosic materials and it is essential to make the process economically viable. Cellulases are the most studied multi- enzyme complex and comprise of endo-glucanases (EG), cellobiohydrolases (CBH) and β- glucosidases (BGL). The complete cellulase system; comprising CBH, EG and BGL components thus acts synergistically to convert crystalline cellulose to glucose. Cellulases are currently the third largest industrial enzyme worldwide. This is due to their wide applications in cotton processing, paper recycling, juice extraction, as detergent enzymes and additives in animal feed. In this study, production of cellulase by five fungal isolates (BTU 251-BTU 255) isolated from mushrooms, was investigated and optimised. Internal transcribed spacer regions (ITS1 and ITS4) were applied to identify the five fungal microorganisms. Isolates were identified as follows: BTU 251 as Aspegillus niger,BTU 253 as Penicillium polonicum, and BTU 255 as Penicillium polonicum. Cellulase was produced in shake flask cultures using Mandel’s mineral solution medium and Avicel as a carbon source. Cellulase activity was tested using 3, 5-Dinitrosalicylic acid assay and zymography, A. niger BTU 251 showed five activity bands ranging from 25- 61 kDa had an average nkat of 7000. Cultures from BTU 252 were the least active with an average nkat/ml of 200 and one activity band of
25 kDa. P. polonicum BTU 253 showed three activity bands ranging between 45 and 60 kDa and had an average nkat/ml of 2200. BTU 254 showed five activity bands ranging from 22-
116 kDa and had average nkat of 350. P. polonicum BTU 255 produced the highest cellulase activity of 8000 nkat/ml and with three activity bands estimated at 45-60 kDa on zymography. The optimal temperature for activity of the cellulases was between 55-70°C and enzymes were most active within a pH range of 4-6. Optimal pH for production of cellulases by P. polonicum BTU 255, P. polonicum BTU 253 and A. niger BTU 251 was 4 while optimal temperature for production of the cellulases was between 50-55°C. Total cellulase activity was determined using Whatman No.1 filter paper as a substrate and β- glucosidase production was determined in polyacrylamide gels using esculin as a substrate. In the hydrolysis of crystalline cellulose (Avicel), a combination of A. niger BTU 251 and P. polonicum BTU 255 (1:1), (1:9), (1:3), and (1:2) produced maximum glucose as follows: 1:1 (0.83g/L), 1:9 (10.4g/L), 1:3 (0.77g/L) and 1:2 (0.73g/L). Cellulases from P. polonicum BTU 255 were partially purified using affinity precipitation and analysed using MALDI- TOF/TOF. Peptide sequences of P. polonicum obtained from MALDI-TOF/TOF analysis were aligned by multiple sequence alignment with C. pingtungium. Conserved regions were identified using BLAST anaylsis as sequences of cellobiohydrolases. More research is required in producing a variety of cellulases that are capable of hydrolysing crystalline cellulose, the current study contributes to possible provision of locally developed combinations of cellulases that can be used in the production of bioethanol.
|
62 |
Chemical Modification of Cellulose Fibers and their Orientation in Magnetic FieldSundar, Smith 31 August 2011 (has links)
Studies that involve natural fiber orientation in a matrix were mostly based on regulating shear forces during mixing of fiber and matrix. This study attempts to propose a novel technique for orientating natural fibers like cellulose in a viscous polymer matrix such as polylactic acid (PLA) by applying the concepts of magnetism. Orientation of cellulose fibers in a PLA was achieved by modifying the cellulose fibers with a ferromagnetic entity and subjecting to a magnetic field. Chemically modified cellulose fibers (CLF) were oriented in dilute polylactic acid by subjecting the fiber and matrix to a magnetic field of ≈ 4T (Tesla). CLF and Microcrystalline cellulose (MCC) were oxidized with Hydrogen peroxide and further reacted with activated Ferrous sulphate heptahydrate (FeSO4.7H2O) in order to form Cellulose-Fe complexes. Chemically modified CLF was characterized by spectroscopic, thermal and morphological methods. The results from X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR spectroscopy) agree that coordination bonds were formed between deprotonated and/or oxidized hydroxyl groups of cellulose and Fe2+ ions. Powder X-ray diffraction (PXRD) was used to compare the crystallinity of unmodified and modified samples of CLF. Thermal properties of modified cellulose were studied using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). Scanning electron microscopy (SEM) results showed that there was minimal morphological change occurred to cellulose after treatment. It was also observed that the electrical conductivity of cellulose modified with Fe 2+ was higher than that of unmodified samples. The modified CLF was then mixed with polylactic acid diluted with dichloromethane and the fibers in the matrix suspension were subjected to a magnetic field of ≈ 4T. The suspension was allowed to solvent cast inside a glass vial in the magnetic field. Morphological examination of the fiber matrix composites using confocal microscopy showed that CLF were successfully oriented along the flux direction of the magnetic field.
|
63 |
Chemical Modification of Cellulose Fibers and their Orientation in Magnetic FieldSundar, Smith 31 August 2011 (has links)
Studies that involve natural fiber orientation in a matrix were mostly based on regulating shear forces during mixing of fiber and matrix. This study attempts to propose a novel technique for orientating natural fibers like cellulose in a viscous polymer matrix such as polylactic acid (PLA) by applying the concepts of magnetism. Orientation of cellulose fibers in a PLA was achieved by modifying the cellulose fibers with a ferromagnetic entity and subjecting to a magnetic field. Chemically modified cellulose fibers (CLF) were oriented in dilute polylactic acid by subjecting the fiber and matrix to a magnetic field of ≈ 4T (Tesla). CLF and Microcrystalline cellulose (MCC) were oxidized with Hydrogen peroxide and further reacted with activated Ferrous sulphate heptahydrate (FeSO4.7H2O) in order to form Cellulose-Fe complexes. Chemically modified CLF was characterized by spectroscopic, thermal and morphological methods. The results from X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR spectroscopy) agree that coordination bonds were formed between deprotonated and/or oxidized hydroxyl groups of cellulose and Fe2+ ions. Powder X-ray diffraction (PXRD) was used to compare the crystallinity of unmodified and modified samples of CLF. Thermal properties of modified cellulose were studied using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). Scanning electron microscopy (SEM) results showed that there was minimal morphological change occurred to cellulose after treatment. It was also observed that the electrical conductivity of cellulose modified with Fe 2+ was higher than that of unmodified samples. The modified CLF was then mixed with polylactic acid diluted with dichloromethane and the fibers in the matrix suspension were subjected to a magnetic field of ≈ 4T. The suspension was allowed to solvent cast inside a glass vial in the magnetic field. Morphological examination of the fiber matrix composites using confocal microscopy showed that CLF were successfully oriented along the flux direction of the magnetic field.
|
64 |
The limited oxidation of cellulose with nitrogen dioxide in carbon tetrachlorideParkinson, John Raymond, January 1957 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1957. / Includes bibliographical references (p. 73-88).
|
65 |
Model studies of cellulose fibers and films and their relation to paper strengthFält, Susanna January 2003 (has links)
<p>The objectives of this work were (i) to develop a new methodfor the preparation of thin cellulose model films, (ii) to usethese model films for swelling measurements and (iii) to relatethe swelling of fibers and films to the dry strength ofpaper.</p><p>In the new film preparation method, NMMO(N-methylmorpholine-N-oxide) was used to dissolve cellulose andDMSO (dimethyl sulfoxide) was added to control the viscosity ofthe cellulose solution. A dilute solution of the cellulose wasspin-coated onto a silicon oxide wafer and the cellulose filmthus prepared was then precipitated in deionised water. Asaturated layer of glyoxalated-polyacrylamide was used toanchor the film onto the silicon oxide wafer. This proceduregave films with thicknesses in the range of 20-270 nm. Thefilms were cleaned in deionised water and were found by ESCAanalysis and contact angle measurements (θ<20°)to be free from solvents. Solid state NMR measurements onfibers spun from NMMO also indicated that the model filmconsisted of about 50% crystalline material and that thecrystalline structure was of the cellulose II type.Determination of the molecular weight distribution of thecellulose surface material showed that the NMMO treatmentcaused only a minor breakdown of the cellulose chains and thatlow molecular mass oligomers of glucose were not created.</p><p>It was further shown that atomic force microscopy (AFM)measurements could be used to determine the thicknessof thecellulose films, in both the dry and wet states. The thicknesswas determined as the height difference between the top surfaceand the underlying silica wafer measured at a position where anincision had been made in the cellulose film. The cellulosesolutions were also directly spin-coated onto the crystal usedin the Quartz crystal microbalance (QCM-D), pre-treated withthe same type of anchoring polymer. With this application,these model surfaces were shown to be suitable for swellingmeasurements with the QCM-D. The extent of swelling and theswelling kinetics in the presence of electrolytes, such asNaCl, CaCl2 and Na2SO4, and at different pH were measured inthis way. The films were found to be very stable during thesemeasurements and the results were comparable to the swellingresults obtained for the corresponding pulps. The swelling ofboth fibers and films followed the general behavior ofpolyelectrolyte gels in the presence of electrolytes and was inaccordance with the Donnan equilibrium theory. The films havebeen shown to differ from fibers with regard to the absence ofa covalent interior network. This influences the evaluation ofthe deswelling effects measured on the model films. Theswelling effect seen with different electrolytes has also beenconsidered in relation to the tensile strength of paperprepared from a kraftliner-pulp. In this study, it was foundthat there was no direct relationship between the swelling ofthe fibers, measured as WRV, and the strength of the paper inthe presence of different electrolytes at pH 5.</p><p><b>KEYWORDS:</b>absorption, carboxymethyl cellulose,cellulose, cellulose fibers, dissolving pulps, donnanequilibrium, electrolytes, film, ion exchange, ionization,kinetics, liner boards, microscopy, spinning, surfaces,swelling, tensile strength, water, water retention value.</p>
|
66 |
Processing of All Cellulose Composites via an Ionic Liquid RouteHuber, Tim January 2012 (has links)
Newly developed all-cellulose composites (ACCs) can overcome the chemical incoherence between cellulose and other polymers by dissolution and regeneration of a portion of cellulose to create a chemically identical matrix phase. New “close to industry”-processing ways for ACCs were developed to create “thick” ACCs (>1 mm thickness) based on composite processes already used in the composite industry.
The ionic liquid (IL) 1-Butyl-3-Methylimidazolium Acetate (BmimAc) is a strong solvent for both, native cellulose and cellulose II. The dissolution process is strongly depended on the temperature and viscosity of the IL-cellulose solution. Next to complete dissolution, rayon fibre can be dissolved partially to achieve the formation of a matrix phase in situ. The highly hydrophilic cellulose based materials show different amounts of shrinkage after composite processing when the coagulant necessary to regenerate the dissolved cellulose is removed by evaporative drying.
Multilayered, “thick” composite laminates could be produced by a simple hand-impregnation of rayon and linen textiles with the solvent and partial dissolution of the cellulosic textiles. A solvent infusion process (SIP) based on vacuum assisted resin infusion was successfully developed to process ACCs. The application of pressure during SIP is crucial to achieve good interlaminar adhesion. The SIP based laminates showed improved tensile strength and stiffness compared to the hand impregnation process.
An analysis of the processing parameters showed that the drying process used to remove the coagulant is important to achieve good fibre-matrix-bonding as harsh evaporative drying causes shrinkage induced cracks in the created matrix phase. Using ethanol as a coagulant instead of water reduced composite swelling and corresponding shrinkage, but leads to a strong reduction in crystallinity of the regenerated cellulose, as shown X-ray diffraction and solid state NMR measurements. Regeneration in distilled water, followed by drying at room temperature produced the best ACC laminate.
The SIP based laminates showed high flexural and impact strength compared to other biocomposites. The composites were also found to be easily compostable especially compared to a PLA-rayon composite.
The rayon fibre was processed on an ITA 3D rotary braiding machine, generally used for the processing of stronger and stiffer glass and carbon fibres. A rectangular profile was produced and analysed. The fibre strength and Young’s modulus were unaffected by the braiding process. The braid could be processed into an ACC by immersion in IL for 60 min at 100 °C. The so produced ACCs showed further improvements in tensile and impact strength due to improved through the thickness strength.
|
67 |
Characterization of a novel cellulose biosynthesis inhibitor, CBI28, in Gluconacetobacter xylinusHarripaul, Ricardo Simeon 01 May 2010 (has links)
To study the underlying mechanisms for microbial cellulose biosythesis, a novel compound, CBI28, was used as an inhibitor along with classical genetics and EMS mutagenesis. An EZ-Link Biotin Hydrazide Kit was used to create a CBI28-Biotin conjugate for further studies. Gluconacetobacter xylinus cells were exposed to 10 uM CBI28 to induce cellulose biosythesis inhibition, lysed and small hydrophobic molecules were extracted using methanol and Waters Oasis HLB SPE-Paks. Samples were separated and detected using the Ultra Performance Liquid Chromatograph-Mass Spectrometer/Photo Diode Array. Putative mutants were isolated but did not survive for further study. An ion with the expected mass of a CBI28-Biotin conjugate (552 m/z) was detected but not in sufficiently high concentrations for characterization. Metabolite studies revealed putative metabolites derived from the HLB SPE and methanol extractions with no significant difference in extraction methods. Potential metabolites with masses of ~281.77 m/z and ~79 m/z were detected in CBI28 exposed cells. Further analysis needs to be performed to determine if CBI28 metabolites prevent cellulose production. / UOIT
|
68 |
Cellulose biosynthesis inhibitors modulate defense transcripts and regulate genes that are implicated in cell wall re-structuring in arabidopsisMortaji, Zahra 01 June 2011 (has links)
The cell wall is a multifunctional structure which is implicated in plant growth and development as well as responding to any environmental changes including biotic and abiotic stresses. One of the practical approaches in cell wall integrity studies is the modification of the quality and quantity of particular cell wall components or destroying the specific step in cell wall synthesis pathway using Cellulose Biosynthesis Inhibitors (CBIs). In this case, chemical screen for swollen organ phenotype has proved to be an important technique to identify the genes that are directly or indirectly involved in cellulose biosynthesis.
In the present research, a number of synthetic CBIs were obtained through a chemical library screen from Chembridge Company for the root swollen phenotype which is believed to be the response to a defect in cellulose biosynthesis. Therefore, a genome-wide expression profiling based on Affymetrix ATH1 GeneChip arrays (contains 22810 probe sets) were applied to investigate the altered transcriptome of four different CBIs including CBI-15, 18, 22, and 27 and isoxaben in 5 day-old Arabidopsis thaliana seedlings. The results of this project revealed overlapped up and down-regulated genes as well as discriminate responses to each CBI. The most striking modification were found in genes involve in response to the stress as well as cell wall integrity and restructuring. Thus, the identification of regulated genes under CBIs treatment suggests a robust candidate group of genes that likely to be correlated to cell wall biosynthesis. / UOIT
|
69 |
The degradation of cellulose in oxygen and nitrogen at high temperaturesMajor, William D. 01 January 1958 (has links)
No description available.
|
70 |
The chlorination of cellulose with thionyl chloride in a pyridine mediumBoehm, Robert Louis, January 1953 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1953. / Includes bibliographical references (leaves 95-98).
|
Page generated in 0.0491 seconds