• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of ambient temperature on serotonin syndrome

Unknown Date (has links)
Serotonin syndrome (SS) is a drug-induced toxicity caused by an excess of serotonin (5-HT) in the central nervous system (CNS). The symptoms of the disorder range from mild to severe, with the severe state evoking life-threatening hyperthermia. Autonomic dysfunction is controlled in part by serotonin receptors, with the 5-HT2A receptor responsible for increasing core body temperature (Tcor). Our results show that the 5-HT2A receptors on the preoptic/anterior hypothalamus (PO/AH) and prefrontal cortex (PFC), in particular, are sensitive to changes in ambient temperature (Tamb). The toxic increase of 5-HT is postulated to occur due to the temperature-dependent activation of these receptors that promotes a positive feedback mechanism. Our results suggest that changes in Tamb can either exacerbate or alleviate the symptom and that this is mediated by the 5-HT2A receptors. Understanding the mechanism involved in elevating Tcor is imperative in treating and preventing the disorder. / by Swapna Krishnamoorthy. / Vita. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
2

New insights into the neuromodulatory role and potential action site of taurine in retinal neurons

Unknown Date (has links)
Taurine is the second most abundant amino acid in the CNS after glutamate and its functions have been found largely related to intracellular calcium ([Ca2+]i) modulation, osmoregulation, membrane stabilization, reproduction and immunity. The action of taurine has also been implicated in neurotransmission and neuromodulation though its specific sites of action are not fully understood. Isolated retinal neurons from the larval tiger salamanders (Ambystoma tigrinum) were used as a model to study the neuromodulatory role of taurine in the CNS and to gain insights into its potential sites of action. A combination of techniques was used, including whole-cell patch clamp recording to study taurine's regulation of voltage-gated potassium (K+) and Ca2+ channels and Fluo-4AM Ca2+-imaging to study taurine's regulation of glutamate-induced [Ca2+] I,. Taurine was shown to suppress of glutamate-induced [Ca2+] l, in a dose dependent manner. This suppression was mostly sensitive to the glycine rece ptor antagonist Strychnine but insensitive to any GABA receptor antagonist. The remaining strychnine-insensitive effect was inhibited with the protein kinase A (PKA) inhibitor, PKI, suggesting that there was an additional metabotropic pathway. Moreover, using the protein kinase C (PKC) inhibitor, GF109203X, there was an enhancement in strychnine-insensitive taurine's regulation. Taurine inhibits voltage-gated Ca2+ channels in the retinal neurons and has a dual effect on voltage-gated K+ channels. Taurine causes an increase in K+ current amplitude which is further enhanced with PKI and blocked with GF109203X, suggesting that it is through a PKC-dependent pathway negatively controlled by PKA-dependent pathway. / There is a suppression of K+ current by taurine with intracellular application of GF109203X, suggesting that the reduction is through a PKA-dependent pathway. With both PKC and PKA inhibitors there is no longer an enhancement in maximum amplitude but a shift of volt dependence on a hyperpolarizing direction. Taurine's enhancement of K+ current is blocked by the Kv1.3 subtype antagonist Margatoxin, with Kv1.3 accounting for the majority of delayed-rectifier sustained current in bipolar and amacrine cells, as well as 50% of ganglion cells. Interestingly, the enhancement of K+ current by taurine is blocked by 5HT2A antagonist MDL11939, suggesting that activation of PKC is through this metabotropic serotonin receptor subtype. The suppression of voltage-gated Ca2+ channels is reversed with a combination of MDL11939 and the 5HT1A antagonist NAN-190. These results provide the evidence that the natural effect of taurine in the retinal neurons might be dependent on the activation of both 5HT1A and 5HT2A receptors. The high apparent activity of taurine on 5HT receptors could have important implication for the actions of taurine in central brain in which taurine has been known to be beneficial for improving mental health, as well as learning and memory processes. / by Simon Bulley. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
3

Roles of serotonin 2A receptor in a serotonin syndrome

Unknown Date (has links)
Serotonin (5-HT) is a neurotransmitter in the central nervous system. Decrease in the brain 5-HT level could induce depression, showing a state of low mood, aversion to motion and feeling of worthlessness. About 12 million adults in the United States have depression. Antidepressants, such as monoamine oxidase inhibitors and selective serotonin reuptake inhibitors, can alleviate the depressive mood by increasing the brain's 5-HT activity, however they can also induce a potentially life-threatening side effect, namely 5-HT syndrome. This syndrome is manifested by neuromuscular hyperactivities, mental disorders and autonomic dysfunctions. Clinical studies have demonstrated that 5-HT2A receptor antagonists could effectively block severe symptoms of patients with the 5-HT syndrome. To understand the underlying mechanisms, in this study we examined the activity of the 5-HT2A receptor in rats with the 5-HT syndrome evoked by a combined injection of clorgyline, a monoamine oxidase inhibitor , and paroxetine, a selective 5-HT reuptake inhibitor. The major findings from my study were that: (1) Chronic clorgyline treatment significantly exacerbated 5-HT2A receptor-mediated symptoms of the 5-HT syndrome animals; (2) The 5-HT2A receptor-mediated symptoms were also aggravated when the 5-HT syndrome animals were housed in warm (32 ÀC) ambient temperature; (3) Blocking 5-HT2A receptors in the medial prefrontal cortex alleviated the 5-HT syndrome through a circuit between raphe serotonergic neurons and medial prefrontal cortex glutamatergic neurons. Taken together, my data demonstrate that the activity of 5-HT2A receptors may be enhanced by chronic antidepressant treatment and warm environmental temperature. / The sensitized 5-HT2A receptor in the medial prefrontal cortex may exacerbate the syndrome through a positive-feedback circuit between medial prefrontal cortex and raphe nuclei, which would result in excessive 5-HT in the brain. This study casts a new light on the underlying mechanisms of the 5-HT syndrome. / by Gongliang Zhang. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
4

Regeneration and plasticity of descending propriospinal neurons after transplantation of Schwann cells overexpressing glial cell line-derived neurotrophic factor following thoracic spinal cord injury in adult rats

Deng, Lingxiao 18 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / After spinal cord injury (SCI), poor axonal regeneration of the central nervous system, which mainly attributed to glial scar and low intrinsic regenerating capacity of severely injured neurons, causes limited functional recovery. Combinatory strategy has been applied to target multiple mechanisms. Schwann cells (SCs) have been explored as promising donors for transplantation to promote axonal regeneration. Among the central neurons, descending propriospinal neurons (DPSN) displayed the impressive regeneration response to SCs graft. Glial cell line-derived neurotrophic factor (GDNF), which receptor is widely expressed in nervous system, possesses the ability to promote neuronal survival, axonal regeneration/sprouting, remyelination, synaptic formation and modulate the glial response. We constructed a novel axonal permissive pathway in rat model of thoracic complete transection injury by grafting SCs over-expressing GDNF (SCs-GDNF) both inside and caudal to the lesion gap. Behavior evaluation and histological analyses have been applied to this study. Our results indicated that tremendous DPSN axons as well as brain stem axons regenerated across the lesion gap back to the caudal spinal cord. In addition to direct promotion on axonal regeneration, GDNF also significantly improved the astroglial environment around the lesion. These regenerations caused motor functional recovery. The dendritic plasticity of axotomized DPSN also contributed to the functional recovery. We applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of DPSNs and its response to axotomy injury and GDNF treatment. We also investigated the neurotransmitters phenotype of FluoroGold (FG) labeled DPSNs. Our results indicated that over 90 percent of FG-labeled DPSNs were glutamatergic neurons. DPSNs in sham animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution, with dorsal-ventral retraction and lateral-medial extension of dendrites. Treatment with GDNF significantly increased the terminal dendritic length of DPSNs. The density of spine-like structures was increased after injury and treatment with GDNF enhanced this effect.

Page generated in 0.1108 seconds