• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gait termination on declined compared to level surface; contribution of terminating and trailing limb work in arresting centre of mass velocity

Abdulhasan, Zahraa M., Buckley, John 08 March 2019 (has links)
Yes / To terminate gait, the mechanical work-done by the lower-limbs is likely to be predominantly negative but how such work is produced/completed has not previously been investigated. The aim of this study was to determine the amount of negative mechanical (external) work-done by the lower-limbs, along with the associated joints (muscle) work, to terminate gait and how these work contributions were affected by a change in surface angle. Eight males completed terminations on the level floor and a declined ramp. Negative mechanical limb-work (limbW(−ve)) was computed (each orthogonal direction) as the dot-product of the ground-reaction-force and centre-of-mass (CoM) velocity. Inverse dynamics was used to calculate ankle, knee and hip negative joints (muscle) work (Wj(−ve)). Measures were determined for each limb for the two-locomotor steps of gait termination. The trailing-limb did 67% (−0.386 J/kg) of the overall limbW(−ve) to terminate gait on the level; and this increased to 74% (−0.451 J/kg) for ramp trials. Wj(−ve) was greater for the trailing- (ankle −0.315; knee −0.357; hip −0.054 J/kg) compared to terminating- limb (ankle, −0.063; knee −0.051; hip −0.014 J/kg), with the increases in ankle Wj(−ve) being temporally associated with increases in perpendicular limbW(−ve). Wj(−ve) increased on both limbs for declined compared to level surface, particularly at the knee (declined −0.357, level −0.096 J/kg), with such increases being temporally associated with increases in parallel limbW(−ve). These findings provide new perspectives on how the limbs do work on the CoM to terminate gait, and may be helpful in designing prosthetic limbs to facilitate walking on ramps. / ZA was funded by the Higher Committee of Education Development in IRAQ (HCED).

Page generated in 0.1072 seconds