Spelling suggestions: "subject:"ceramic coating"" "subject:"keramic coating""
1 |
Deposição de filmes por plasma eletrolítico em ligas de alumínioAntônio, César Augusto [UNESP] 28 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:28Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-03-28Bitstream added on 2014-06-13T20:30:13Z : No. of bitstreams: 1
antonio_ca_me_bauru.pdf: 1720399 bytes, checksum: 396bef6efc3f71eb7d1f9f3cad7c2279 (MD5) / Apesar da excelente relação resitência/peso das ligas de alumínio, a aplicação tecnológica destas ligas é limitada pela baixa resistência ao desgaste. Neste trabalho, amostras de uma liga de alumínio (AA 5052) foram tratadas pelo processo de oxidação por plasma eletrolítico, com tempo de exposição variando de 150 a 900 s. A composição e a estrutura química dos revestimentos assim produzidos foram analisadas por espectroscopia de absorção no infravermelho. Um método baseado na medida de correntes parasitas e a perfilometria foram usados, respectivamente, na determinação da espessura e da rugosidade das camadas depositadas. O revestimento formado porssui espessura de até 9,2um. Análises da morfologia dos revestimentos foram feitas com microscopia eletrônica de varredura enquanto a resistência a desgastte das superfícies foi avaliada com um sistema pino-sobre-disco. Os resultados revelaram a deposição de um revestimento cerâmico, que conferiu expressivo aumento à resistência a desgaste da liga, o qual mostrou que as amostras tratadas suportaram uma carga aplicada de 13,44 vezes em comparação com amostras sem tratamento / Despiste the excellent strengh/weight ratio, technological applications of aluminum aloys are limited by their low wear resistance. In this work, samples of AA 5052 aluminum alloy have been modified by plasma electrolytic oxidation, with exposure time ranging from 150 s to 900 soconds. Compositional characterization has been performed by fourier transform infrared spectroscopy. Eddy current and profilometry have been used, respectively, to evaluate thickness and roughness of the deposited layers. The coating formed has a thickness of up to 9,2 micrometers. Morphological investigations have been performed with scanning electron microscopy while wear resitance has been assessed using a pin-on-disk devide. The results have revealed the deposition of ceramic layers with significant enhancement of wear resistance, which showed that the treated samples resistance, which showed that the treated samples resist an applied load 13.44 times more compared with untreated samples
|
2 |
Microstructure characteristics and tribological behaviour of plasma sprayed ceramic coatingsFadini, Luigi January 2023 (has links)
Surface engineering is increasingly becoming inevitable for meeting the high-performance requirements constantly expected from modern engineering components. Higher demands for combined functionalities, which a base material alone cannot provide, motivate intensive academic studies on various types of coatings, with the ultimate objective of their practical utilisation in industries. Especially the study of wear has become of critical importance for the industry development of new components, as wear-related mechanisms frequently compromise the durability and reliability of machines. Consequently, the need for effective wear control has become progressively vital in pursuing advanced and dependable technology for the future. Different coating technologies are being developed to forestall the wear of engineering components. More specifically, the thermal spraying technique of atmospheric plasma spraying (APS) has been proven particularly efficient in implementing thick film coating for aeronautic, automotive and medical applications. However, advanced coatings are required for improved performance and extended durability in harsh operating environments. These developments have stimulated research on developing novel coating through optimised deposition parameters and modified feedstock characteristics to achieve a more redefined microstructure. The primary scope of the research associated with this thesis is to target the study and research of plasma-sprayed ceramic coatings designed to provide exceptional wear resistance to targeted components as well as improved mechanical properties. The presented work involves an investigation of varying feedstock powder particle-size distributions, different coating chemistries and comparing the suspension plasma injection technology to its more traditional powdered feedstock variant. The result obtained suggested that the influence of powder-size particles affects the resultant microstructure with a finer composition, denoted by a lower porosity of 1.3% compared to the coarser powder fed 1.9% (both presenting a standard deviation of 0.2%). However, it could be seen that both the presence of optimised spraying parameters and finer feedstock particles were significant in obtaining improved mechanical properties. Furthermore, an examination of the powder-fed coating revealed slightly improved hardness properties to the newly developed suspension-sprayed samples. However, the powder-fed coatings distinctly exhibited superior resistance to sliding wear with an average specific wear of 5.7 (± 0.9 standard deviation) compared to the 12.8 (± 1 standard deviation) × 10-6 mm3∙N-1∙m-1of suspension-based coatings. In conclusion, it was observed that the chemical composition of the alumina-chromia composite coating demonstrated exceptional hardness properties among the analysed samples (1603 Vicker Hardness 0.2) and superior sliding wear resistance (0.59 × 10-6mm3∙N-1∙m-1).
|
3 |
The Influence of Thickness on the Complex Modulus of Air Plasma Sprayed Ceramic Blend CoatingsHansel, Jason Edgar 12 December 2008 (has links)
No description available.
|
4 |
Nanoindentation of YSZ-alumina ceramic thin films grown by combustion chemical vapor depositionStollberg, David Walter 05 1900 (has links)
Combustion chemical vapor deposition (combustion CVD) is a thin film deposition process that uses a flame created by the ignition of an aerosol containing precursors dissolved in a flammable solvent. Combustion CVD is a relatively new technique for creating thin film oxide coatings. Combustion CVD has been successfully used to deposit high quality thin oxide films for potential applications such as thermal barrier coatings, dielectric thin films, composite interlayer coatings, etc. The present work involved developing the optimum parameters for deposition of thin films of yttria-stabilized zirconia (YSZ), alumina (Al₂O₃), and YSZ-alumina composites followed by a determination of the mechanical properties of the films (measured using nanoindentation) as a function of composition. The optimized parameters for deposition of YSZ, alumina, and YSZ-alumina composites onto single crystal a-plane alumina involved using an organic liquid as the flammable solvent and Y 2-ethylhexanoate, Zr 2-ethylhexanoate and Al acetylacetonate as the metal precursors at a 0.002 M concentration delivered at 4 ml/min at flame temperatures of 155 ℃ and substrate temperatures of 105 ℃. The resulting films were grown with deposition rates of ~ 1.5 μm/hr. Measurement of the mechanical properties (hardness, elastic modulus and fracture toughness) of the films was performed using a mechanical properties microprobe called the Nanoindenter®. In order to obtain valid results from nanoindentation, the combustion CVD films were optimized for minimum surface roughness and grown to a thickness of approximately 0.8 μm. With the penetration depth of the indenter at approximately 150 nm, the 800 nm thickness of the film made influences of the substrate on the measurements negligible. The hardnesses and elastic moduli of the YSZ-alumina films did not vary with the composition of the film. The fracture toughness, however, did show a dependence on the composition. It was found that second phase particles of alumina grown into a YSZ matrix increased the fracture toughness of the films (on average, 1.76 MPa• m⁰.⁵ for 100% YSZ to 2.49 MPa• m⁰.⁵ for 70 mol% YSZ/30 mol% alumina). Similarly, second phase particles of YSZ grown into an alumina matrix also increased the fracture toughness (on average, 2.20 MPa• m⁰.⁵ for 100% alumina to 2.45 MPa• m⁰.⁵ for 37.2 mol% YSZ/62.8 mol% alumina). Modeling of the fracture toughness of the YSZ-alumina films was successfully achieved by using the following toughening mechanisms: crack deflection from the second phase particles, grain bridging around the particles, and residual stress from the CTE mismatch between the film and the substrate and between the second phase particles and the matrix of the film.
|
Page generated in 0.0776 seconds