• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Production of mullite fibers by the sol-gel method

Sparks, Jeffery Scott 05 1900 (has links)
No description available.
2

Processing of ceramic fibers from particle suspensions /

Carty, William Michael. January 1992 (has links)
Thesis (Ph. D.)--University of Washington, 1992. / Vita. Includes bibliographical references (leaves [206]-221).
3

An investigation of fabric composite heat pipe feasibility issues

Marks, Timothy S. 22 May 1992 (has links)
The design of a fabric composite heat pipe has been completed. It is composed of two end caps, between which a fluid containment liner composed of metal foil and an outer structural layer composed of a ceramic fabric is stretched. The interior of the heat pipe is layered with a ceramic fabric wick. This heat pipe is being constructed currently at Oregon State University. The heat pipe test facility has been designed and built. Final assembly of the various components is now under way. This test facility consists of a vacuum chamber with a coolant jacket on the outside. Inside this chamber a test stand is placed which is composed of radiation shields and a supporting stand for the heat pipe and the heaters. Experimental work has been performed to ensure material compatibility of the metal foils used as a fluid containment liner. Specific materials tested include copper, aluminum, titanium, FEP teflon and three ceramic fabrics. These materials have been exposed to a variety of working fluids for up to 5000 hours at various sub-boiling temperatures. The best combinations of materials include aluminum or copper and acetone, or titanium and water. The least compatible combinations included aluminum or copper and water. An experimental apparatus to measure the wettability of candidate ceramic fabric wicks was designed and built. This apparatus included a pressure chamber to allow measurements to be taken at elevated pressures and temperatures. The liquid front velocity in one meter lengths of unwetted samples of ceramic fabrics was measured. A computer was used to determine liquid front position at 30 finite points along the fabric sample. Analysis of the data allowed calculation of a constant composed of two wicking parameters to be measured. Analysis of various analytical methods for predicting these parameters was performed. / Graduation date: 1993
4

Design and testing of fabric composite heat pipes for space nuclear power applications

Kiestler, William C. 16 December 1992 (has links)
Conventional stainless steel - water and ceramic fabric composite water heat pipes have been built and tested. The tests have been conducted to compare the performance characteristics between conventional and fabric composite heat pipe radiators for space nuclear power heat rejection systems. The fabric composite concept combines a strong ceramic fabric with a thin metal liner to form a very lightweight heat pipe. The heat pipes tested have used identical, homogeneous fabric wicks and water as the working fluid. One fabric composite heat pipe has been constructed by fitting a braided aluminoborosilicate fabric tube over the outside of the conventional stainless steel heat pipe. A more advanced fabric composite design combines the woven fabric with a 0.25 mm (10 mil) stainless steel tube as the liner, and reduces the mass of the heat pipe by a factor of three. A heat pipe testing facility was designed and built for the purpose of testing various conventional and fabric composite heat pipes. This facility allows the testing of heat pipes in a vacuum, at low temperatures, and can accommodate a variety of heat pipe designs. Instrumentation and computer interfacing provide for continuous monitoring and evaluation of heat pipe performance. Tests show that heat pipe radiator capacity can be significantly enhanced by using the fabric composite design. Tests comparing a conventional heat pipe with fabric composite heat pipes achieved a 100% increase in the emissivity and heat rejection capacity of the radiator. Since the ceramic fabric is strong enough to withstand the internal pressure of the heat pipe, a very thin metal foil can be used to contain the working fluid. The increase in heat rejection capacity, combined with the significant reduction in the heat pipe mass, translates into a substantial savings for space power systems employing fabric composite heat pipe radiators. / Graduation date: 1993
5

Influence of processing variables on the mechanical properties of SiC fibers prepared by chemical vapor deposition

Prasad, Ajit 08 1900 (has links)
No description available.
6

Experimental determination of heat transfer through metal foils and ceramic fiber mats during composite fabrication

Tkach, Suzanne G. January 1997 (has links)
Thesis (M.S.)--Ohio University, November, 1997. / Title from PDF t.p.
7

Feasibility of manufacturing ceramic based metal matrix composites (MMC) for multi-purpose industrial application

Madzivhandila, Takalani 02 November 2012 (has links)
M.Tech. / The mining industry exerts ever increasing demand for components with high wear resistance to the extent that plain ferrous alloys are falling short. Innovative metal-matrix composites nonferrous metals have been widely researched and used. Casting composites based on ferrous alloys pose monumental challenges in casting. Firstly, the density differential results in large resistant forces on the ceramic such that unless a rigid structure is configured, the less dense ceramic floats on the metal stream. Secondly, the poor wetting properties between metal and ceramic will result in inferior bonding of the matrix, hence separation of solids in service.This study presents the feasibility of manufacturing ceramic based metal matrix composites (MMC) for multi-purpose industrial application including wettability and the bonding between the matrix and the composite. The cold rods of alumina positioned in the mould prior to casting cracked as soon as they came in contact with hot metal. Because of the density difference between ceramic and liquid metal the alumina tended to float under the influence of Ferro static pressure. Infiltration of zirconia (ZrO2) and alumina (Al2O3) in ferrous matrix was investigated. Infiltration of liquid metal in ceramic filters increased with porosity of filters i.e. greater infiltration occurred in filters with larger pore volume fraction measured in terms of number of pores per linear inch (ppi). Thus, there was high infiltration in casting with 10ppi followed by 30ppi and there was poor infiltration in 50ppi ceramics. Infiltration increased with increasing temperature of the ceramics. A temperature of 1000oC was found to be superior to 800oC. The wetting behaviour of molten iron on the substrates of Al2O3 was investigated. Titanium in high chromium white cast iron was found to improve the wetting characteristics on alumina. The wetting angle decreased with increased titanium content. The wear properties of ferrous alloys used were not significantly improved by the ceramic used to make the composite. Filters are produced by a deposition process and hence are not densified for the purpose of manufacturing hard composites
8

Ultralite copper reflex tube life test and ceramic fabric wicking rate experiments

Snuggerud, Ross D. 22 January 1993 (has links)
This thesis covers two topics. The first subject involves tests run on a ultralite reflux tube supplied by Battelle Pacific Northwest Laboratories (PNL). The second topic involves tests to determine the relative wicking rates of several different fabrics. The ultralite reflux tube supplied by PNL was constructed of copper and Nextel 312. It had a 10 mil thick copper evaporator and a 10 mil thick copper condenser end cap. The bulk of the condenser was 2 mil thick copper covered by a one inch diameter Nextel 312 woven hose. A life test was run within the Heat Pipe Test Facility, a chamber used to simulate low earth orbit. The life test lasted for over 800 hours, during which time the reflux tube operated steadily with no drop in performance. At the end of the test the reflux tube was removed and observed. The only noticeable change was a slight discoloration of the Nextel 312 used to cover the condenser. This discoloration was consistent with previously observed phenomenon. The second topic, fabric wicking rate studies were done as a follow up study to the dry uptake tests previously conducted at Oregon State University. The purpose of the tests were to get a relative feel for the ability of different fabrics to wick water. This was achieved using a drop test in which the fabrics were laid out on a bridge connecting two containers. One of the containers was elevated above the other. The fabrics were allowed to wick water from the upper container to the lower container and the rate at which this was accomplished was measured. The fabrics were all able to move significant amounts of water. The stiffer fabrics seemed to perform better. The major transport mechanism was transport between fabric layers and the fabric and the bridge. / Graduation date: 1993
9

Effect of interfacial thermal conductance and fiber orientation on the thermal diffusivity/conductivity of unidirectional fiber-reinforced ceramic matrix composites /

Bhatt, Hemanshu D., January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references. Also available via the Internet.
10

Fabric composite radiation heat transfer study

Gulshan, Zubaida A. 29 March 1993 (has links)
A Fabric Composite Radiation Heat Transfer Study has been conducted to determine the effective emissivities of specific fabric composite materials. The weave of the fabric and the high strength capability of the individual fiber in combination with the thermal conductivity and chemical stability of specific metallic liner, result in a very efficient light weight heat rejection system. Primary investigation included aluminum, copper, stainless steel and titanium as liner materials, and three different ceramic fabrics - Astroquartz II (a trademark of JPS Co., Slater, SC), Nextel (a trademark of 3M Co., St. Paul, MN) and Nicalon (a trademark of The Nippon Carbon Co., Japan). Experiments showed that fabric composite materials have significantly higher effective emissivities than the bare metallic liner materials. Aluminum and Astroquartz II combination and aluminum and Nextel combination appeared to be the most promising among the tested samples. To simulate deep space the experiment was performed in vacuum where coolant fluid was cirulated at about -10°C. The effective emissivity measurements were conducted at 376 K, 521 K and 573 K. Also high temperature effective emissivity measurements need to be performed. / Graduation date: 1993

Page generated in 0.1231 seconds